Abatzoglou, J.T. and A.P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. , 113(42) , 11770–11775, doi:10.1073/pnas.1607171113.
Abbott, D.W. et al., 2020: Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals, 10(12) , 2432, doi:10.3390/ani10122432.
Abrahão, G.M. and M.H. Costa, 2018: Evolution of rain and photoperiod limitations on the soybean growing season in Brazil: The rise (and possible fall) of double-cropping systems. Agric. For. Meteorol. , 256–257, 32–45, doi:10.1016/j.agrformet.2018.02.031.
Achard, F. et al., 2014: Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. , 20(8) , 2540–2554, doi:10.1111/gcb.12605.
Ackrill, R. and H. Abdo, 2020: On-farm anaerobic digestion uptake barriers and required incentives: A case study of the UK East Midlands region. J. Clean. Prod. , 264, 121727, doi:10.1016/j.jclepro.2020.121727.
Acosta-Alba, I., E. Chia, and N. Andrieu, 2019: The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels. Agric. Syst. , 171, 155–170, doi:10.1016/j.agsy.2019.02.001.
Adam, M. et al., 2020: Which is more important to sorghum production systems in the Sudano-Sahelian zone of West Africa: Climate change or improved management practices?Agric. Syst. , 185, 102920, doi:10.1016/j.agsy.2020.102920.
Adger, W.N. et al., 2015: Focus on environmental risks and migration: causes and consequences. Environ. Res. Lett. , 10(6) , 060201, doi:10.1088/1748-9326/10/6/060201.
Adghim, M. et al., 2020: Comparative life cycle assessment of anaerobic co-digestion for dairy waste management in large-scale farms. J. Clean. Prod. , 256, 120320, doi:10.1016/j.jclepro.2020.120320.
Adhikari, S. and B. Ozarska, 2018: Minimizing environmental impacts of timber products through the production process “From Sawmill to Final Products”. Environ. Syst. Res. , 7(1) , 6, doi:10.1186/s40068-018-0109-x.
AGDW – The Forest Owners, 2021: The Working Group of German Forest Owner Associations. https://www.waldeigentuemer.de/verband/mitglieder sverbaende_agdw/#nrw (Accessed October 6, 2021).
Aggarwal, P.K. et al., 2018: The climate-smart village approach: framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol. Soc. , 23(1) , art14, doi:10.5751/ES-09844-230114.
Agostini, A., J. Giuntoli, and A. Boulamanti, 2014: Carbon accounting of forest bioenergy. Publications Office of the European Union, Luxembourg, 88 pp.
Aguilera, E. et al., 2020: Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. , 181, 102809, doi:10.1016/j.agsy.2020.102809.
Aguirre-Villegas, H.A., R.A. Larson, and M.A. Sharara, 2019: Anaerobic digestion, solid-liquid separation, and drying of dairy manure: Measuring constituents and modeling emission. Sci. Total Environ. , 696, 134059, doi:10.1016/j.scitotenv.2019.134059.
Agyarko-Mintah, E. et al., 2017: Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. , 61, 138–149, doi:10.1016/j.wasman.2016.11.027.
Ahlering, M., J. Fargione, and W. Parton, 2016: Potential carbon dioxide emission reductions from avoided grassland conversion in the northern Great Plains. Ecosphere, 7 (12) , e01625, doi:10.1002/ecs2.1625.
Ai, Z., N. Hanasaki, V. Heck, T. Hasegawa, and S. Fujimori, 2021: Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation. Nat. Sustain. , 4(10) , 884–891, doi:10.1038/s41893-021-00740-4.
Ajonina, G.N. et al., 2014: Assessment of Mangrove Carbon Stocks in Cameroon, Gabon, the Republic of Congo (RoC) and the Democratic Republic of Congo (DRC) Including their Potential for Reducing Emissions from Deforestation and Forest Degradation (REDD+). In: The Land/Ocean Interactions in the Coastal Zone of West and Central Africa[Diop, S., J.-P. Barusseau, and C. Descamps (eds.)]. Springer, Cham, Switzerland, pp. 177–189.
Akiyama, H., K. Yagi, and X. Yan, 2005: Direct N2O emissions from rice paddy fields: Summary of available data. Global Biogeochem. Cycles, 19(1) , doi:10.1029/2004GB002378.
Al‐Haj, A.N. and R.W. Fulweiler, 2020: A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. , 26(5) , 2988–3005, doi:10.1111/gcb.15046.
Alamgir, M. et al., 2017: Economic, Socio-Political and Environmental Risks of Road Development in the Tropics. Curr. Biol. , 27(20) , R1130–R1140, doi:10.1016/j.cub.2017.08.067.
Alamgir, M., M.J. Campbell, S. Sloan, W.E. Phin, and W.F. Laurance, 2018: Road risks & environmental impact assessments in Malaysian road infrastructure projects. Jurutera, 13–16.
Alary, V. et al., 2015: Roles of small ruminants in rural livelihood improvement – Comparative analysis in Egypt. Rev Elev Med Vet Pays Trop, 68(2–3) , 79–85, doi: https://doi.org/10.19182/remvt.20592.
Albers, A., P. Collet, A. Benoist, and A. Hélias, 2020: Back to the future: dynamic full carbon accounting applied to prospective bioenergy scenarios. Int. J. Life Cycle Assess. , 25 (7) , 1242–1258, doi:10.1007/s11367-019-01695-7.
Aleksandrowicz, L. et al., 2019: Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data. Environ. Int. , 126, 207–215, doi:10.1016/j.envint.2019.02.004.
Alix-Garcia, J., 2007: A spatial analysis of common property deforestation. J. Environ. Econ. Manage. , 53(2) , 141–157, doi:10.1016/j.jeem.2006.09.004.
Alix-Garcia, J., A. de Janvry, E. Sadoulet, and J.M. Torres, 2005: An Assessment of Mexico’s Payment for Environmental Services Program. Food and Agriculture Organiation of the United Nations, Rome, 85 pp.
Alix-Garcia, J.M., E.N. Shapiro, and K.R.E. Sims, 2012: Forest Conservation and Slippage: Evidence from Mexico’s National Payments for Ecosystem Services Program. Land Econ. , 88(4) , 613–638, doi:10.3368/le.88.4.613.
Alix-Garcia, J.M., K.R.E. Sims, and P. Yañez-Pagans, 2015: Only One Tree from Each Seed? Environmental Effectiveness and Poverty Alleviation in Mexico’s Payments for Ecosystem Services Program. Am. Econ. J. Econ. Policy, 7(4) , 1–40, doi:10.1257/pol.20130139.
Alkama, R. and A. Cescatti, 2016: Biophysical climate impacts of recent changes in global forest cover. Science, 351 (6273), 600–604, doi:10.1126/science.aac8083.
Alongi, D.M., 2020: Blue Carbon Coastal Sequestration for Climate Change. Springer Briefs in Climate Studies. 88p. https://doi.org/10.1007/ 978-3-319-91698-9
Alter, R.E., E.-S. Im, and E.A.B. Eltahir, 2015: Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. , 8(10) , 763–767, doi:10.1038/ngeo2514.
Altieri, M.A. and C.I. Nicholls, 2017: The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change, 140(1) , 33–45, doi:10.1007/s10584-013-0909-y.
Altieri, M.A., C.I. Nicholls, A. Henao, and M.A. Lana, 2015: Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. , 35(3) , 869–890, doi:10.1007/s13593-015-0285-2.
Alvarez-Berrios, N.L. and T. Mitchell Aide, 2015: Global demand for gold is another threat for tropical forests. Environ. Res. Lett. , 10(1) , 014006, doi:10.1088/1748-9326/10/1/014006.
Alvarez-Hess, P.S. et al., 2019: A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle. Agric. Syst. , 169, 14–23, doi:10.1016/j.agsy.2018.11.008.
Amadu, F.O., D.C. Miller, and P.E. McNamara, 2020: Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. , 167, 106443, doi:10.1016/j.ecolecon.2019.106443.
Amouzou, K.A. et al., 2019: Climate change impact on water- and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. F. Crop. Res. , 235, 104–117, doi:10.1016/j.fcr. 2019.02.021.
Andam, K.S., P.J. Ferraro, A. Pfaff, G.A. Sanchez-Azofeifa, and J.A. Robalino, 2008: Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. , 105(42) , 16089–16094, doi:10.1073/pnas.0800437105.
Andela, N. et al., 2017: A human-driven decline in global burned area. Science, 356(6345) , 1356–1362, doi:10.1126/science.aal4108.
Andela, N. et al., 2019: The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data, 11(2) , 529–552, doi:10.5194/essd-11-529-2019.
Anderegg, W.R.L. et al., 2020: Climate-driven risks to the climate mitigation potential of forests. Science, 368(6497) , doi:10.1126/science.aaz7005.
Andersen, R. et al., 2017: An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. , 25(2) , 271–282, doi:10.1111/rec.12415.
Anderson, R., P.E. Bayer, and D. Edwards, 2020: Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. , 56, 197–202, doi:10.1016/j.pbi.2019.12.006.
Anderson, R.G. et al., 2011: Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. , 9(3) , 174–182, doi:10.1890/090179.
Angelo, M.J. and A. du Plessis, 2017: Research Handbook on Climate Change and Agricultural Law. Edward Elgar Publishing, Cheltenham and Northampton, UK, 488 pp.
Angelsen, A., 2017: REDD+ as Result-based Aid: General Lessons and Bilateral Agreements of Norway. Rev. Dev. Econ. , 21 (2) , 237–264, doi:10.1111/rode.12271.
Antwi-Agyei, P., A.J. Dougill, and L.C. Stringer, 2015: Barriers to climate change adaptation: evidence from northeast Ghana in the context of a systematic literature review. Clim. Dev. , 7(4) , 297–309, doi:10.1080/17565529.2014.951013.
Aragão, L.E.O.C. et al., 2018: 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. , 9(1) , 536, doi:10.1038/s41467-017-02771-y.
Arakelyan, I., A. Wreford, and D. Moran, 2017: Can agriculture be climate smart? In: Building a Climate Resilient Economy and Society[Ninan, K.N. and M. Inoue (eds.)]. Edward Elgar Publishing, Cheltenham and Northampton, UK, pp. 336.
Archanjo, B.S. et al., 2017: Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 294, 70–79, doi:10.1016/j.geoderma.2017.01.037.
Arenas-Corraliza, M.G., M.L. López-Díaz, and G. Moreno, 2018: Winter cereal production in a Mediterranean silvoarable walnut system in the face of climate change. Agric. Ecosyst. Environ. , 264, 111–118, doi:10.1016/j.agee.2018.05.024.
Arévalo, P., P. Olofsson, and C.E. Woodcock, 2020: Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sens. Environ. , 238, 111051, doi:10.1016/j.rse.2019.01.013.
Argañaraz, J.P., G. Gavier Pizarro, M. Zak, M.A. Landi, and L. M. Bellis, 2015: Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Sci. Total Environ. , 520, 1–12, doi:10.1016/j.scitotenv.2015.02.081.
Arifanti, V.B., J.B. Kauffman, D. Hadriyanto, D. Murdiyarso, and R. Diana, 2019: Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. For. Ecol. Manage. , 432, 17–29, doi:10.1016/j.foreco.2018.08.047.
Arima, E.Y., P. Barreto, E. Araújo, and B. Soares-Filho, 2014: Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land use policy, 41, 465–473, doi:10.1016/j.landusepol.2014.06.026.
Arneth, A. et al., 2017: Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. , 10(2) , 79, doi:10.1038/ngeo2882.
Arora, V.K. and A. Montenegro, 2011: Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. , 4, 514–518, doi:10.1038/ngeo1182.
Arora, V.K. and J.R. Melton, 2018: Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun. , 9(1) , 1326, doi:10.1038/s41467-018-03838-0.
Arrieta, E.M. and A.D. González, 2018: Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina. Food Policy, 79, 58–66, doi:10.1016/j.foodpol.2018.05.003.
Artés, T. et al., 2019: A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data, 6(1) , 296, doi:10.1038/s41597-019-0312-2.
Arts, B., V. Ingram, and M. Brockhaus, 2019: The Performance of REDD+: From Global Governance to Local Practices. Forests, 10(10) , 837, doi:10.3390/f10100837.
Aryal, J.P., D.B. Rahut, T.B. Sapkota, R. Khurana, and A. Khatri-Chhetri, 2020: Climate change mitigation options among farmers in South Asia. Environ. Dev. Sustain. , 22(4) , 3267–3289, doi:10.1007/s10668-019-00345-0.
Aschemann-Witzel, J., 2015: Consumer perception and trends about health and sustainability: trade-offs and synergies of two pivotal issues. Curr. Opin. Food Sci. , 3, 6–10, doi:10.1016/j.cofs.2014.08.002.
Ashton, M.S., M.L. Tyrrell, D. Spalding, and B. Gentry, 2012: Managing Forest Carbon in a Changing Climate. Springer, Dordrecht, The Netherlands, 882 pp.
Asner, G.P. and R. Tupayachi, 2016: Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. , 12 (9) , 094004, doi:10.1088/1748-9326/aa7dab.
Asner, G.P. et al., 2005: Selective Logging in the Brazilian Amazon. Science, 310(5747) , 480–482, doi:10.1126/science.1118051.
Atwood, T.B. et al., 2017: Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change, 7(7) , 523–528, doi:10.1038/nclimate3326.
Australian Government- Clean Energy Regulator, 2021: The Emission Reduction Fund Project Maps. http://www.cleanenergyregulator.gov.au/maps/Pages/erf-projects/index.html (Accessed August 21, 2021).
Austin, K.G., et al., 2020: The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. , 11, doi:10.1038/s41467-020-19578-z.
Awad, Y.M. et al., 2018: Biochar Effects on Rice Paddy: Meta-analysis. Advances in Agronomy[Sparks, D.L. (ed.)]. 148, 1–32, doi.org/10.1016/bs.agron.2017.11.005.
Awasthi, A., K. Singh, and R.P. Singh, 2017: A concept of diverse perennial cropping systems for integrated bioenergy production and ecological restoration of marginal lands in India. Ecol. Eng. , 105, 58–65, doi:10.1016/j.ecoleng.2017.04.049.
Azevedo, A.A. et al., 2017: Limits of Brazil’s Forest Code as a means to end illegal deforestation. Proc. Natl. Acad. Sci. , 114(29) , 7653–7658, doi:10.1073/pnas.1604768114.
Ba, S., Q. Qu, K. Zhang, and J.C.J. Groot, 2020: Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting. Biosyst. Eng. , 193, 126–137, doi:10.1016/j.biosystemseng.2020.02.015.
Baccini, A. et al., 2017: Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 358(6360) , 230–234, doi:10.1126/science.aam5962.
Bäckstrand, K., J.W. Kuyper, B.-O. Linnér, and E. Lövbrand, 2017: Non-state actors in global climate governance: from Copenhagen to Paris and beyond. Env. Polit. , 26(4) , 561–579, doi:10.1080/09644016.2017.1327485.
Bai, X. et al., 2019: Responses of soil carbon sequestration to climate‐smart agriculture practices: A meta‐analysis. Glob. Change Biol. , 25(8) , 2591–2606, doi:10.1111/gcb.14658.
Bajželj, B. et al., 2014: Importance of food-demand management for climate mitigation. Nat. Clim. Change, 4(10) , 924–929, doi:10.1038/nclimate2353.
Baka, J., 2014: What wastelands? A critique of biofuel policy discourse in South India. Geoforum, 54, 315–323, doi:10.1016/j.geoforum.2013.08.007.
Baker, E., V. Bosetti, L.D. Anadon, M. Henrion, and L. Aleluia Reis, 2015: Future costs of key low-carbon energy technologies: Harmonization and aggregation of energy technology expert elicitation data. Energy Policy, 80, 219–232, doi:10.1016/j.enpol.2014.10.008.
Baker, J.S., C.M. Wade, B.L. Sohngen, S. Ohrel, and A.A. Fawcett, 2019: Potential complementarity between forest carbon sequestration incentives and biomass energy expansion. Energy Policy, 126, 391–401, doi:10.1016/j.enpol.2018.10.009.
Bakkaloglu, S. et al., 2021: Quantification of methane emissions from UK biogas plants. Waste Manag. , 124, 82–93, doi:10.1016/j.wasman.2021.01.011.
Ballantyne, A.P., C.B. Alden, J.B. Miller, P.P. Tans, and J.W.C. White, 2012: Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488(7409) , 70–72, doi:10.1038/nature11299.
Balmford, A. et al., 2016: Getting Road Expansion on the Right Track: A Framework for Smart Infrastructure Planning in the Mekong. PLOS Biol. , 14(12) , e2000266, doi:10.1371/journal.pbio.2000266.
Barber, C.P., M.A. Cochrane, C.M. Souza, and W.F. Laurance, 2014: Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. , 177, 203–209, doi:10.1016/j.biocon.2014.07.004.
Barbier, E.B. et al., 2011: The value of estuarine and coastal ecosystem services. Ecol. Monogr. , 81(2) , 169–193.
Barger, N.N., et al., 2018, Chapter 3: Direct and indirect drivers of land degradation and restoration. In: The IPBES assessment report on land degradation and restoration[Montanarella, L., R. Scholes, and A. Brainich (eds.)]. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, pp. 137–218.
Bargués‐Tobella, A. et al., 2020: Trees in African drylands can promote deep soil and groundwater recharge in a future climate with more intense rainfall. L. Degrad. Dev. , 31(1) , 81–95, doi:10.1002/ldr.3430.
Baritz, R., L. Wiese, I. Verbeke, and R. Vargas, 2018: Voluntary Guidelines for Sustainable Soil Management: Global Action for Healthy Soils. In: International Yearbook of Soil Law and Policy 2017[Ginzky, H., E. Dooley, I.L. Heuser, E. Kasimbazi, T. Markus, and T. Qin (eds.)]. Springer, Cham, Switzerland, pp. 17–36.
Barlow, J., E. Berenguer, R. Carmenta, and F. França, 2020: Clarifying Amazonia’s burning crisis. Glob. Change Biol. , 26(2) , 319–321, doi:10.1111/gcb.14872.
Barretto, A.G.O.P., G. Berndes, G. Sparovek, and S. Wirsenius, 2013: Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Glob. Change Biol. , 19(6) , 1804–1815, doi:10.1111/gcb.12174.
Bastin, J.-F. et al., 2019: The global tree restoration potential. Science, 365(6448) , 76–79, doi:10.1126/science.aax0848.
Bastos, A. et al., 2020: Sources of Uncertainty in Regional and Global Terrestrial CO2Exchange Estimates. Global Biogeochem. Cycles, 34(2) , e2019GB006393, doi:10.1029/2019GB006393.
Bationo, A. et al., 2012: Knowing the African Soils to Improve Fertilizer Recommendations. In: Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT) [Kihara, J., D. Fatondji, J.W. Jones, G. Hoogenboom, R. Tabo, and A. Bationo (eds.)]. Springer Netherlands, Dordrecht, The Netherlands, pp. 19–42.
Batlle-Bayer, L. et al., 2020: Food affordability and nutritional values within the functional unit of a food LCA. An application on regional diets in Spain. Resour. Conserv. Recycl. , 160, 104856, doi:10.1016/j.resconrec.2020.104856.
Baudrier, M., V. Bellassen, and C. Foucherot, 2015: Previous Agricultural Emissions Policy (2003-2013) reduced French agricultural emissions. Climate Brief No. 49, IAEA. pp. 1–31. INIS-FR--16-1150, Paris, France.
Baumgartner, R.J., 2019: Sustainable Development Goals and the Forest Sector—a Complex Relationship. Forests, 10(2) , 152, doi:10.3390/f10020152.
Bayala, J., J. Sanou, Z. Teklehaimanot, A. Kalinganire, and S. Ouédraogo, 2014: Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. , 6, 28–34, doi:10.1016/j.cosust.2013.10.004.
Bayala, J. et al., 2015: Advances in knowledge of processes in soil–tree–crop interactions in parkland systems in the West African Sahel: A review. Agric. Ecosyst. Environ. , 205, 25–35, doi:10.1016/j.agee.2015.02.018.
Beach, R.H. et al., 2015: Global mitigation potential and costs of reducing agricultural non-CO2 greenhouse gas emissions through 2030. J. Integr. Environ. Sci. , 12(sup1) , 87–105, doi:10.1080/1943815X.2015.1110183.
Beauchemin, K.A., E.M. Ungerfeld, R.J. Eckard, and M. Wang, 2020: Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14, 2–16, doi:10.1017/S1751731119003100.
Bebber, D.P. and N. Butt, 2017: Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Sci. Rep. , 7(1) , 14005, doi:10.1038/s41598-017-14467-w.
Bedulli, C., P.S. Lavery, M. Harvey, C.M. Duarte, and O. Serrano, 2020: Contribution of Seagrass Blue Carbon Toward Carbon Neutral Policies in a Touristic and Environmentally-Friendly Island. Front. Mar. Sci. , 7, 1–12, doi:10.3389/fmars.2020.00001.
Bellassen, V. et al., 2021: The Carbon and Land Footprint of Certified Food Products. J. Agric. Food Ind. Organ. , 19(2) , 113–126, doi:10.1515/jafio-2019-0037.
Ben-Arye, T. and S. Levenberg, 2019: Tissue Engineering for Clean Meat Production. Front. Sustain. Food Syst. , 3, 1–19, doi:10.3389/fsufs.2019.00046.
Bengochea Paz, D., K. Henderson, and M. Loreau, 2020: Agricultural land use and the sustainability of social-ecological systems. Ecol. Modell. , 437, 109312, doi:10.1016/j.ecolmodel.2020.109312.
Bengtsson, J., et al., 2019: Grasslands—more important for ecosystem services than you might think. Ecosphere, 10(2) , 1–20, doi:10.1002/ecs2.2582.
Benson, T. and T. Mogues, 2018: Constraints in the fertilizer supply chain: evidence for fertilizer policy development from three African countries. Food Secur. , 10(6) , doi:10.1007/s12571-018-0863-7.
Bessou, C. et al., 2020: Accounting for soil organic carbon role in land use contribution to climate change in agricultural LCA: which methods? Which impacts?Int. J. Life Cycle Assess. , 25(7) , 1217–1230, doi:10.1007/s11367-019-01713-8.
Bhattacharya, P. and K.N. Ninan, 2011: Social cost-benefit analysis of intensive versus traditional shrimp farming: A case study from India. Nat. Resour. Forum, 35 (4) , 321–333, doi:10.1111/j.1477-8947.2011.01385.x.
Bhattarai, B., 2011: Assessment of mangrove forests in the Pacific region using Landsat imagery. J. Appl. Remote Sens. , 5(1) , 053509, doi:10.1117/1.3563584.
Bhomia, R.K. et al., 2019: Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitig. Adapt. Strateg. Glob. Change, 24(4) , 645–668, doi:10.1007/s11027-018-9809-9.
Biernat, L., F. Taube, R. Loges, C. Kluß, and T. Reinsch, 2020: Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany. Sustainability, 12(8) , 3240, doi:10.3390/su12083240.
Binam, J.N. et al., 2015: Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa. Environ. Econ. Policy Stud. , 17 (4) , 543–575, doi:10.1007/s10018-015-0107-4.
Blackman, A., 2015: Strict versus mixed-use protected areas: Guatemala’s Maya Biosphere Reserve. Ecol. Econ. , 112, 14–24, doi:10.1016/j.ecolecon.2015.01.009.
Blackman, AP. Veit, 2018: Titled Amazon Indigenous Communities Cut Forest Carbon Emissions. Ecol. Econ. , 153, 56–67, doi:10.1016/j.ecolecon.2018.06.016.
Blackman, A., L. Goff, and M. Rivera Planter, 2018: Does eco-certification stem tropical deforestation? Forest Stewardship Council certification in Mexico. J. Environ. Econ. Manage. , 89, 306–333, doi:10.1016/j.jeem.2018.04.005.
Blaser, J. and C. Küchli, 2011: Globale Walderhaltung und -bewirtschaftung und ihre Finanzierung: eine Bestandesaufnahme (Global forest conservation and management and its financing: an appraisal). Schweizerische Zeitschrift fur Forstwes. , 162(4) , 107–116, doi:10.3188/szf.2011.0107.
Blaser, W.J. et al., 2018: Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. , 1(5) , 234–239, doi:10.1038/s41893-018-0062-8.
Blicharska, M. et al., 2019: Biodiversity’s contributions to sustainable development. Nat. Sustain. , 2(12) , 1083–1093, doi:10.1038/s41893- 019-0417-9.
Blok, K. et al., 2020: Assessment of Sectoral Greenhouse Gas Emission Reduction Potentials for 2030. Energies, 13(4) , 943, doi:10.3390/en13040943.
Bockstael, N.E., A.M. Freeman, R.J. Kopp, P.R. Portney, and V.K. Smith, 2000: On Measuring Economic Values for Nature. Environ. Sci. Technol. , 34(8) , 1384–1389, doi:10.1021/es990673l.
Bodirsky, B.L. et al., 2020: The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci. Rep. , 10(1) , 19778, doi:10.1038/s41598-020-75213-3.
Bolinder, M.A., et al., 2020: The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitig. Adapt. Strateg. Glob. Change, 25, 929–952, doi:10.1007/s11027-020-09916-3.
Bonan, G.B., 2016: Forests, Climate, and Public Policy: A 500-Year Interdisciplinary Odyssey. Annu. Rev. Ecol. Evol. Syst. , 47(1) , 97–121, doi:10.1146/annurev-ecolsys-121415-032359.
Bond, W.J., N. Stevens, G.F. Midgley, and C.E.R. Lehmann, 2019: The Trouble with Trees: Afforestation Plans for Africa. Trends Ecol. Evol. , 34(11) , 963–965, doi:10.1016/j.tree.2019.08.003.
Boone Kauffman, J. et al., 2017: The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Front. Ecol. Environ. , 15(4) , 183–188, doi:10.1002/fee.1482.
Bora, R.R., M. Lei, J.W. Tester, J. Lehmann, and F. You, 2020a: Life Cycle Assessment and Technoeconomic Analysis of Thermochemical Conversion Technologies Applied to Poultry Litter with Energy and Nutrient Recovery. ACS Sustain. Chem. Eng. , 8(22) , 8436–8447, doi:10.1021/acssuschemeng.0c02860.
Bora, R.R. et al., 2020b: Techno-Economic Feasibility and Spatial Analysis of Thermochemical Conversion Pathways for Regional Poultry Waste Valorization. ACS Sustain. Chem. Eng. , 8(14) , 5763–5775, doi:10.1021/acssuschemeng.0c01229.
Borchard, N. et al., 2019: Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. , 651, 2354–2364, doi:10.1016/j.scitotenv.2018.10.060.
Börner, J. et al., 2017: The Effectiveness of Payments for Environmental Services. World Dev. , 96, 359–374, doi:10.1016/J.WORLDDEV.2017.03.020.
Borras, S.M. and J.C. Franco, 2018: The challenge of locating land-based climate change mitigation and adaptation politics within a social justice perspective: towards an idea of agrarian climate justice. Third World Q. , 39(7) , 1308–1325, doi:10.1080/01436597.2018.1460592.
Bos, A.B., 2020: Towards performance assessment of subnational forest-based climate change mitigation initiatives. PhD Thesis synthesis 24 p., Wageningen University, Wageningen, The Netherlands.
Bossio, D.A. et al., 2020: The role of soil carbon in natural climate solutions. Nat. Sustain. , 3(5) , 391–398, doi:10.1038/s41893-020-0491-z.
Bowler, D.E. et al., 2012: Does community forest management provide global environmental benefits and improve local welfare?Front. Ecol. Environ. , 10(1) , 29–36, doi:10.1890/110040.
Bowman, D.M.J.S. et al., 2019: Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 48(4) , 350–362, doi:10.1007/s13280-018-1084-1.
Bowman, D.M.J.S. et al., 2020a: Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. , 1(10) , 500–515, doi:10.1038/s43017-020-0085-3.
Bowman, D.M.J.S., G.J. Williamson, O.F. Price, M.N. Ndalila, and R.A. Bradstock, 2020b: Australian forests, megafires and the risk of dwindling carbon stocks. Plant. Cell Environ. , 44(2) , 347–355, doi:10.1111/pce.13916.
Brandão, M., M.U.F. Kirschbaum, A.L. Cowie, and S. V. Hjuler, 2019: Quantifying the climate change effects of bioenergy systems: Comparison of 15 impact assessment methods. GCB Bioenergy, 11(5) , 727–743, doi:10.1111/gcbb.12593.
Brando, P.M. et al., 2014: Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl. Acad. Sci. , 111(17) , 6347–6352, doi:10.1073/pnas.1305499111.
Brandt, M. et al., 2019a: Changes in rainfall distribution promote woody foliage production in the Sahel. Commun. Biol. , 2(1) , 133, doi:10.1038/s42003-019-0383-9.
Brandt, P., G. Yesuf, M. Herold, and M.C. Rufino, 2019b: Intensification of dairy production can increase the GHG mitigation potential of the land use sector in East Africa. Glob. Change Biol. , 26(2) , 568–585, doi:10.1111/gcb.14870.
Braun, M. et al., 2016: A holistic assessment of greenhouse gas dynamics from forests to the effects of wood products use in Austria. Carbon Manag. , 7(5–6) , 271–283, doi:10.1080/17583004.2016.1230990.
Bristow, M. et al., 2016: Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern Australia. Biogeosciences, 13(22) , 6285–6303, doi:10.5194/bg-13-6285-2016.
Brown, B., R. Fadillah, Y. Nurdin, I. Soulsby, and R. Ahmad, 2014: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia. S.a.p.i.en.s, 7(2) , 1–13.
Brunet-Navarro, P., H. Jochheim, and B. Muys, 2017: The effect of increasing lifespan and recycling rate on carbon storage in wood products from theoretical model to application for the European wood sector. Mitig. Adapt. Strateg. Glob. Change, 22(8) , 1193–1205, doi:10.1007/s11027-016-9722-z.
Buchholz, T., M.D. Hurteau, J. Gunn, and D. Saah, 2016: A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. GCB Bioenergy, 8(2) , 281–289, doi:10.1111/gcbb.12245.
Buchner, B.K., C. Trabacchi, F. Mazza, D. Abramskiehn, and D. Wang, 2015: A CPI Report –Global Landscape of Climate Finance 2015. Climate Policy Initiative (CPI), London, UK, 17 pp.
Buchspies, B., M. Kaltschmitt, and M. Junginger, 2020: Straw utilization for biofuel production: A consequential assessment of greenhouse gas emissions from bioethanol and biomethane provision with a focus on the time dependency of emissions. GCB Bioenergy, 12(10) , 789–805, doi:10.1111/gcbb.12734.
Burivalova, Z. et al., 2019: What works in tropical forest conservation, and what does not: Effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conserv. Sci. Pract. , 1(6) , e28, doi:10.1111/csp2.28.
Burney, J.A., S.J. Davis, and D.B. Lobell, 2010: Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. , 107(26) , 12052–12057, doi:10.1073/pnas.0914216107.
Busch, J. and K. Ferretti-Gallon, 2017: What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy, 11, 3–23, doi:10.1093/reep/rew013.
Busch, J. et al., 2019: Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change, 9(6) , 463–466, doi:10.1038/s41558-019-0485-x.
Butsic, V., M. Baumann, A. Shortland, S. Walker, and T. Kuemmerle, 2015: Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. , 191, 266–273, doi:10.1016/j.biocon.2015.06.037.
Cabral, R.P., M. Bui, and N. Mac Dowell, 2019: A synergistic approach for the simultaneous decarbonisation of power and industry via bioenergy with carbon capture and storage (BECCS). Int. J. Greenh. Gas Control, 87, 221–237, doi:10.1016/j.ijggc.2019.05.020.
Cadier, C., E. Bayraktarov, R. Piccolo, and M.F. Adame, 2020: Indicators of Coastal Wetlands Restoration Success: A Systematic Review. Front. Mar. Sci. , 7, Art 600220. doi:10.3389/fmars.2020.600220.
Calvin, K. et al., 2021: Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy, 13(9) , 1346–1371, doi:10.1111/gcbb.12863.
Cameron, C., L.B. Hutley, D.A. Friess, and B. Brown, 2019: Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecol. Appl. , 29(1) , e1810 doi:10.1002/eap.1810.
Camia, A. et al., 2020: The use of woody biomass for energy production in the EU. Publications Office of the European Union, Luxembourg, 182 pp.
Campbell, M., M. Alamgir, and W. Laurance, 2017: Roads to ruin: Can we build roads that benefit people while not destroying nature?Australas. Sci. , 38(2) , 40–41.
Carattini, S., A. Baranzini, and R. Lalive, 2018: Is Taxing Waste a Waste of Time? Evidence from a Supreme Court Decision. Ecol. Econ. , 148, 131–151, doi:10.1016/j.ecolecon.2018.02.001.
CARB, 2019: California Tropical Forest Standard: Criteria for Assessing Jurisdiction-Scale Programs that Reduce Emissions from Tropical Deforestation. California Air Resources Board, California, USA, 49 pp.
Cardinael, R. et al., 2018: Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ. Res. Lett. , 13(12) , 124020, doi:10.1088/1748-9326/aaeb5f.
Caro, D., E. Kebreab, and F.M. Mitloehner, 2016: Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Clim. Change, 137(3–4) , 467–480, doi:10.1007/s10584-016-1686-1.
Caro Torres, P., W. de Jong, A. Denvir, D. Humphreys, and K. McGinley, 2016:Can Legality Verification enhance local rights to forest resources? Piloting the policy learning protocol in the Peruvian forest context . International Union of Forest Research Organizations (IUFRO) and Yale University’s Governance, Environment and Markets (GEM) Initiative, IUFRO, Vienna, Austria, 113 pp. http://www.iufro.org/science/divisions/division-9/90000/90500/90505/publications/.
Carrijo, D.R., M.E. Lundy, and B.A. Linquist, 2017: Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. F. Crop. Res. , 203, 173–180, doi:10.1016/j.fcr.2016.12.002.
Carroll, J. and A.J. Daigneault, 2019: Achieving ambitious climate targets: Is it economical for New Zealand to invest in agricultural GHG mitigation?Environ. Res. Lett. , 14: 124064 doi:10.1088/1748-9326/ab542a.
Carvalho, J.L.N. et al., 2014: Crop-pasture rotation: A strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agric. Ecosyst. Environ. , 183, 167–175, doi:10.1016/j.agee.2013.11.014.
Carvalho, J.L.N., T.W. Hudiburg, H.C.J. Franco, and E.H. DeLucia, 2017: Contribution of above‐ and belowground bioenergy crop residues to soil carbon. GCB Bioenergy, 9(8) , 1333–1343, doi:10.1111/gcbb.12411.
Cassman, K. and P. Grassini, 2020: A global perspective on sustainable intensification research. Nat. Sustain. , 3(4) , 262–268, doi:10.1038/s41893-020-0507-8.
Cayuela, M.L. et al., 2014: Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. , 191(0) , 5–16, doi:10.1016/j.agee.2013.10.009.
Cayuela, M.L., S. Jeffery, and L. van Zwieten, 2015: The molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric. Ecosyst. Environ. , 202, 135–138, doi:10.1016/j.agee.2014.12.015.
CBI, 2020: Climate Bonds Initiative: Certification Ecoagro-Rizoma Agro, Brazil. https://www.climatebonds.net/certification/ecoagro-rizoma. (Accessed April 15, 2021).
Ceccherini, G. et al., 2020: Abrupt increase in harvested forest area over Europe after 2015. Nature, 583(7814) , 72–77, doi:10.1038/s41586-020-2438-y.
Ceddia, M.G., S. Sedlacek, N.O. Bardsley, and S. Gomez-y-Paloma, 2013: Sustainable agricultural intensification or Jevons paradox? The role of public governance in tropical South America. Glob. Environ. Change, 23(5) , 1052–1063, doi:10.1016/j.gloenvcha.2013.07.005.
Chabé-Ferret, S. and J. Subervie, 2013: How much green for the buck? Estimating additional and windfall effects of French agro-environmental schemes by DID-matching. J. Environ. Econ. Manage. , 65 (1) , 12–27, doi:10.1016/j.jeem.2012.09.003.
Chagas, J.C., M. Ramin, and S.J. Krizsan, 2019: In Vitro Evaluation of Different Dietary Methane Mitigation Strategies. Animals, 9(12) , 1120, doi:10.3390/ani9121120.
Chapman, M. et al., 2020: Large climate mitigation potential from adding trees to agricultural lands. Glob. Change Biol. , 26(8) , 4357–4365, doi:10.1111/gcb.15121.
Chen, K., Y. Wang, R. Zhang, H. Zhang, and C. Gao, 2019: CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. , 70(1) , 667–697, doi:10.1146/annurev-arplant-050718-100049.
Cherubini, F. et al., 2009: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recycl. , 53 (8) , 434–447, doi:10.1016/j.resconrec.2009.03.013.
Chevallier, F. et al., 2005: Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res. , 110(D24) , D24309, doi:10.1029/2005JD006390.
Chiaramonti, D and C. Panoutsou, 2018: Low-ILUC biofuel production in marginal areas: Can existing EU policies support biochar deployment in EU MED arid lands under desertification?Chem. Eng. Trans. , 65, 841–846, doi:10.3303/CET1865141.
Chidthaisong, A. et al., 2018: Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand. Soil Sci. Plant Nutr. , 64(1) , 31–38, doi:10.1080/00380768.2017.1399044.
Chimner, R.A., D.J. Cooper, F.C. Wurster, and L. Rochefort, 2017: An overview of peatland restoration in North America: where are we after 25 years?Restor. Ecol. , 25(2) , 283–292, doi:10.1111/rec.12434.
Chisholm, R.A., L.S. Wijedasa, and T. Swinfield, 2016: The need for long-term remedies for Indonesia’s forest fires. Conserv. Biol. , 30(1) , 5–6, doi:10.1111/cobi.12662.
Chomba, S., F. Sinclair, P. Savadogo, M. Bourne, and M. Lohbeck, 2020: Opportunities and Constraints for Using Farmer Managed Natural Regeneration for Land Restoration in Sub-Saharan Africa. Front. For. Glob. Change, 3, 571679 . doi:10.3389/ffgc.2020.571679.
Chriki, S. and J.-F. Hocquette, 2020: The Myth of Cultured Meat: A Review. Front. Nutr. , 7 (February), 1–9, doi:10.3389/fnut.2020.00007.
Chum, H., A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, A. Goss Eng, W. Lucht, M. Mapako, O. Masera Cerutti, T. McIntyre, T. Minowa, and K. Pingoud, 2011: Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation[Edenhofer, O., R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, and C. von Stechow (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 209–332.
Churkina, G. et al., 2020: Buildings as a global carbon sink. Nat. Sustain. , 3(4) , 269–276, doi:10.1038/s41893-019-0462-4.
Claassen, R., F. Carriazo, and K. Ueda, 2010: Grassland Conversion for Crop Production in the United States: Defining Indicators for Policy Analysis. OECD Agri-environmental Indicators: Lessons Learned and Future Directions. Organisation for Economic Co-operation and Development (OECD), Washington, DC, USA, 27.
Claassen, R., C. Langpap, and J. Wu, 2017: Impacts of Federal Crop Insurance on Land Use and Environmental Quality. Am. J. Agric. Econ. , 99(3) , 592–613, doi:10.1093/ajae/aaw075.
Claassen, R., E.N. Duquette, and D.J. Smith, 2018: Additionality in U.S. Agricultural Conservation Programs. Land Econ. , 94(1) , 19–35, doi:10.3368/le.94.1.19.
Clark, H., C. Pinares-Patiño, and C. DeKlein, 2005: Relationships between biodiversity and production in grasslands at local and regional scales. In: Grassland: a global resource[McGilloway, D.A. (ed.)]. Wageningen Academic Publishers, Wageningen, The Netherlands, 279–293 pp.
Clark, M. and D. Tilman, 2017: Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. , 12(6) , 064016, doi:10.1088/1748-9326/aa6cd5.
Clark, M.A. et al., 2020: Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science, 370(6517) , 705–708, doi:10.1126/science.aba7357.
Climate Smart Forest and Nature Management, 2021: European Network, Climate-Smart Forestry in Europe. https://www.vbne.nl/klimaatslimbosen natuurbeheer/projecten-europa (Accessed April 15, 2021).
Cohn, A.S. et al., 2019: Forest loss in Brazil increases maximum temperatures within 50 km. Environ. Res. Lett. , 14(8) , 084047, doi:10.1088/1748-9326/ab31fb.
Colley, T.A., S.I. Olsen, M. Birkved, and M.Z. Hauschild, 2020: Delta Life Cycle Assessment of Regenerative Agriculture in a Sheep Farming System. Integr. Environ. Assess. Manag. , 16(2) , 282–290, doi:10.1002/ieam.4238.
Conant, R.T., C.E.P. Cerri, B.B. Osborne, and K. Paustian, 2017: Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. , 27(2) , 662–668, doi:10.1002/eap.1473.
Conchedda, G. and F.N. Tubiello, 2020: Drainage of organic soils and GHG emissions: validation with country data. Earth Syst. Sci. Data, 12(4) , 3113–3137, doi:10.5194/essd-12-3113-2020.
Contreras-Negrete, G. et al., 2014: Genetic diversity and structure of wild and managed populations of Polaskia chende (Cactaceae) in the Tehuacán-Cuicatlán Valley, Central Mexico: insights from SSR and allozyme markers. Genet. Resour. Crop Evol. , 62(1) , 85–101, doi:10.1007/s10722-014-0137-y.
Cook-Patton, S.C. et al., 2020: Mapping carbon accumulation potential from global natural forest regrowth. Nature, 585(7826) , 545–550, doi:10.1038/s41586-020-2686-x.
Corbeels, M., R. Cardinael, K. Naudin, H. Guibert, and E. Torquebiau, 2019: The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil Tillage Res. , 188, 16–26, doi:10.1016/j.still.2018.02.015.
Corbeels, M., R. Cardinael, D. Powlson, R. Chikowo, and B. Gerard, 2020: Carbon sequestration potential through conservation agriculture in Africa has been largely overestimated. Soil Tillage Res. , 196, 104300, doi:10.1016/j.still.2019.104300.
Costanza, R. et al., 1997: The value of the world’s ecosystem services and natural capital. Nature, 387(6630) , 253–260, doi:10.1038/387253a0.
Costanza, R. et al., 2014: Changes in the global value of ecosystem services. Glob. Environ. Change, 26, 152–158, doi:10.1016/j.gloenvcha.2014.04.002.
Couwenberg, J., R. Dommain, and H. Joosten, 2010: Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. , 16(6) , 1715–1732, doi:10.1111/j.1365-2486.2009.02016.x.
Cowie, A.L. et al., 2021: Applying a science‐based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy, 13(8) , 1210–1231, doi:10.1111/gcbb.12844.
Creutzig, F. et al., 2018: Towards demand-side solutions for mitigating climate change. Nat. Clim. Change, 8(4) , 260–263, doi:10.1038/s41558-018-0121-1.
Crippa, M. et al., 2021: EDGAR v6.0 Greenhouse Gas Emissions. European Commission, Joint Research Centre (JRC), Ispra, Italy. https://edgar.jrc.ec.europa.eu/dataset_ghg60 (Accessed May 1, 2021).
Crooks, S., D. Herr, J. Tamelander, D. Laffoley, and J. Vandever, 2011: Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. The World Bank, Washington, DC, 69 pp, https://openknowledge.worldbank.org/handle/10986/18318.
Crusius, J., 2020: “Natural” Climate Solutions Could Speed Up Mitigation, With Risks. Additional Options Are Needed. Earth’s Futur. , 8(4) , doi:10.1029/2019EF001310.
da Silva, S.S. et al., 2021: Burning in southwestern Brazilian Amazonia, 2016–2019. J. Environ. Manage. , 286, 112189, doi:10.1016/j.jenvman.2021.112189.
Daioglou, V., B. Wicke, A.P.C. Faaij, and D.P. van Vuuren, 2015: Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenergy, 7(6) , 1321–1334, doi:10.1111/gcbb.12228.
Daioglou, V. et al., 2017: Greenhouse gas emission curves for advanced biofuel supply chains. Nat. Clim. Change, 7(12) , 920–924, doi:10.1038/s41558-017-0006-8.
Daioglou, V., J.C. Doelman, B. Wicke, A. Faaij, and D.P. van Vuuren, 2019: Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change, 54, 88–101, doi:10.1016/j.gloenvcha.2018.11.012.
Daioglou et al., 2020b: Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study. Clim. Change, 163, 1603–1620, doi:10.1007/s10584-020-02799-y.
Dargie, G.C. et al., 2017: Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542(7639) , 86–90, doi:10.1038/nature21048.
Dargie, G.C. et al., 2019: Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change, 24(4) , 669–686, doi:10.1007/s11027-017-9774-8.
Dasgupta, P., 2021: The Economics of Biodiversity: The Dasgupta Review. HM Treasury, UK Government, London, UK, 126–145 pp.
Dass, P., B.Z. Houlton, Y. Wang, and D. Warlind, 2018: Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. , 13(7) , 074027, doi:10.1088/1748-9326/aacb39.
Davin, E.L. and N. de Noblet-Ducoudré, 2010: Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. J. Clim. , 23(1) , 97–112, doi:10.1175/2009JCLI3102.1.
de Figueiredo, E.B. et al., 2017: Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J. Clean. Prod. , 142, 420–431, doi:10.1016/j.jclepro.2016.03.132.
de Groot, R. et al., 2012: Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. , 1(1) , 50–61, doi:10.1016/j.ecoser.2012.07.005.
de Klein, C.A.M., T.J. van der Weerden, J. Luo, K.C. Cameron, and H.J. Di, 2020: A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. New Zeal. J. Agric. Res. , 63(1) , 29–43, doi:10.1080/00288233.2019.1614073.
de los Santos, C.B. et al., 2019: Recent trend reversal for declining European seagrass meadows. Nat. Commun. , 10(1) , 3356, doi:10.1038/s41467-019-11340-4.
de Oliveira Garcia, W., T. Amann, and J. Hartmann, 2018: Increasing biomass demand enlarges negative forest nutrient budget areas in wood export regions. Sci. Rep. , 8(1) , 5280, doi:10.1038/s41598-018-22728-5.
de Ponti, T., B. Rijk, and M.K. van Ittersum, 2012: The crop yield gap between organic and conventional agriculture. Agric. Syst. , 108, 1–9, doi:10.1016/j.agsy.2011.12.004.
De Stefano, A., M.G. Jacobson, 2017: Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor. Syst. , 92(2) , 285–299, doi:10.1007/s10457-017-0147-9.
de Vrese, P., S. Hagemann, and M. Claussen, 2016: Asian irrigation, African rain: Remote impacts of irrigation. Geophys. Res. Lett. , 43(8) , 3737–3745, doi:10.1002/2016GL068146.
DeCicco, J.M. and W.H. Schlesinger, 2018: Opinion: Reconsidering bioenergy given the urgency of climate protection. Proc. Natl. Acad. Sci. , 115(39) , 9642–9645, doi:10.1073/pnas.1814120115.
DeCiucies, S., T. Whitman, D. Woolf, A. Enders, and J. Lehmann, 2018: Priming mechanisms with additions of pyrogenic organic matter to soil. Geochim. Cosmochim. Acta, 238, 329–342, doi:10.1016/j.gca.2018.07.004.
Deininger, K. and B. Minten, 2002: Determinants of Deforestation and the Economics of Protection: An Application to Mexico. Am. J. Agric. Econ. , 84(4) , 943–960, doi:10.1111/1467-8276.00359.
Department of Agriculture, 2020: Farm Income and Wealth Statistics.U.S. Department of Agriculture, https://www.ers.usda.gov/data-products/farm-income-and-wealth-statistics/data-files-us-and-state-level-farm-income-and-wealth-statistics (Accessed March 23, 2021).
Descheemaeker, K. et al., 2016: Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: a call for integrated impact assessments. Reg. Environ. Change, 16(8) , 2331–2343, doi:10.1007/s10113-016-0957-8.
Devaraju, N., N. de Noblet-Ducoudré, B. Quesada, and G. Bala, 2018: Quantifying the Relative Importance of Direct and Indirect Biophysical Effects of Deforestation on Surface Temperature and Teleconnections. J. Clim. , 31(10) , 3811–3829, doi:10.1175/JCLI-D-17-0563.1.
Dezécache, C. et al., 2017: Gold-rush in a forested El Dorado: deforestation leakages and the need for regional cooperation. Environ. Res. Lett. , 12(3) , 034013, doi:10.1088/1748-9326/aa6082.
Di, H.J and K.C. Cameron, 2016: Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: a review. J. Soils Sediments, 16(5) , 1401–1420, doi:10.1007/s11368-016-1403-8.
Dickie, A. et al., 2014a: Strategies for Mitigating Climate Change in Agriculture: Recommendations for Philanthropy – Executive Summary. Climate Focus and California Environmental Associate, Climate and Land Use Alliance, San Francisco, USA. 17 pp.
Dickie, I.A. et al., 2014b: Conflicting values: ecosystem services and invasive tree management. Biol. Invasions, 16(3) , 705–719, doi:10.1007/s10530-013-0609-6.
Dioha, M.O. and A. Kumar, 2020: Exploring greenhouse gas mitigation strategies for agriculture in Africa: The case of Nigeria. Ambio, 49(9) , 1549–1566, doi:10.1007/s13280-019-01293-9.
Doelman, J.C. et al., 2018: Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change, 48, 119–135, doi:10.1016/j.gloenvcha.2017.11.014.
Doelman, J.C. et al., 2020: Afforestation for climate change mitigation: Potentials, risks and trade‐offs. Glob. Change Biol. , 26(3) , 1576–1591, doi:10.1111/gcb.14887.
Domke, G., A. Brandon, R. Diaz-Lasco, S. Federici, E. Garcia-Apaza, G. Grassi, T. Gschwantner, M. Herold, Y. Hirata, Å. Kasimir, M.J. Kinyanjui, H. Krisnawati, A. Lehtonen, R.E. Malimbwi, S. Niinistö, S.M. Ogle, T. Paul, N.H. Ravindranath, J. Rock, C.R. Sanquetta, M.J.S. Sanchez, M. Vitullo, S.J. Wakelin, and J. Zhu., 2019: Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 4, Agriculture, Forestry and Other Land Use, Chapter 4, Forest Land [Calvo Buendia, E., K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, and S. Federici (eds.)]. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 71 pp.
Domke, G.M., S.N. Oswalt, B.F. Walters, and R.S. Morin, 2020: Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. , 117(40) , 24649–24651, doi:10.1073/pnas.2010840117.
Donato, D.C., J.B. Kauffman, R.A. Mackenzie, A. Ainsworth, and A.Z. Pfleeger, 2012: Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. J. Environ. Manage. , 97, 89–96, doi:10.1016/j.jenvman.2011.12.004.
Donnison, C. et al., 2020: Bioenergy with Carbon Capture and Storage (BECCS): Finding the win–wins for energy, negative emissions and ecosystem services—size matters. GCB Bioenergy, 12(8) , 586–604, doi:10.1111/gcbb.12695.
Dooley, K. and S. Kartha, 2018: Land-based negative emissions: risks for climate mitigation and impacts on sustainable development. Int. Environ. Agreements Polit. Law Econ. , 18(1) , 79–98, doi:10.1007/s10784-017-9382-9.
Drew, J., C. Cleghorn, A. Macmillan, and A. Mizdrak, 2020: Healthy and Climate-Friendly Eating Patterns in the New Zealand Context. Environ. Health Perspect. , 128(1) , 017007, doi:10.1289/EHP5996.
Drews, M., M.A.D. Larsen, and J.G. Peña Balderrama, 2020: Projected water usage and land-use-change emissions from biomass production (2015–2050). Energy Strateg. Rev. , 29, 100487, doi:10.1016/j.esr.2020.100487.
Du, Y.-D. et al., 2018: Crop yield and water use efficiency under aerated irrigation: A meta-analysis. Agric. Water Manag. , 210, 158–164, doi:10.1016/j.agwat.2018.07.038.
Duarte, C.M. et al., 2020: Rebuilding marine life. Nature, 580(7801) , 39–51, doi:10.1038/s41586-020-2146-7.
Duffy, K.A. et al., 2021: How close are we to the temperature tipping point of the terrestrial biosphere?Sci. Adv. , 7(3) , doi:10.1126/sciadv.aay1052.
Duguma, L.A., P.A. Minang, and M. van Noordwijk, 2014: Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy. Environ. Manage. , 54(3) , 420–432, doi:10.1007/s00267-014-0331-x.
Dulac, J., 2013: Global land transport infrastructure requirements. Estimating road and railway infrastructure capacity and costs to 2050. 54p. International Energy Agency (IEA), Paris, France.
Dunic, J.C., C.J. Brown, R.M. Connolly, M.P. Turschwell, and I.M. Côté, 2021: Long‐term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Change Biol. , 27(17) , 4096–4109, doi:10.1111/gcb.15684.
Eckard, R. and H. Clark, 2020: Potential solutions to the major greenhouse-gas issues facing Australasian dairy farming. Anim. Prod. Sci. , 60(1) , 10, doi:10.1071/AN18574.
Ekholm, T., 2020: Optimal forest rotation under carbon pricing and forest damage risk. For. Policy Econ. , 115, 102131, doi:10.1016/j.forpol.2020.102131.
Elbersen, B. et al., 2020: Definition and classification of marginal lands suitable for industrial crops in Europe. Wageningen University, Wageningen, The Netherlands, 62 pp.
Elevitch, C., D. Mazaroli, and D. Ragone, 2018: Agroforestry Standards for Regenerative Agriculture. Sustainability, 10 (9) , 3337, doi:10.3390/su10093337.
Elliott, M. et al., 2016: Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration. Estuar. Coast. Shelf Sci. , 176, 12–35, doi:10.1016/j.ecss.2016.04.003.
Ellis, P.W. et al., 2019: Reduced-impact logging for climate change mitigation (RIL-C) can halve selective logging emissions from tropical forests. For. Ecol. Manage. , 438, 255–266, doi:10.1016/j.foreco.2019.02.004.
Ellison, D. et al., 2017: Trees, forests and water: Cool insights for a hot world. Glob. Environ. Change, 43, 51–61, doi:10.1016/j.gloenvcha.2017.01.002.
Elshout, P.M.F. et al., 2015: Greenhouse-gas payback times for crop-based biofuels. Nat. Clim. Change, 5(6) , 604–610, doi:10.1038/nclimate2642.
Emenike, O. et al., 2020: Initial techno-economic screening of BECCS technologies in power generation for a range of biomass feedstock. Sustain. Energy Technol. Assessments, 40, 100743, doi:10.1016/j.seta.2020.100743.
Emery, I., S. Mueller, Z. Qin, and J.B. Dunn, 2017: Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States. Environ. Sci. Technol. , 51(1) , 733–741, doi:10.1021/acs.est.6b04189.
Engel, R.A., M.E. Marlier, and D.P. Lettenmaier, 2019: On the causes of the summer 2015 Eastern Washington wildfires. Environ. Res. Commun. , 1(1) , 011009, doi:10.1088/2515-7620/ab082e.
Eory, V. et al., 2015: Review and update the UK agriculture MACC to assess the abatement potential for the 5th carbon budget period and to 2050: Final report submitted for the project contract “Provision of services to review and update the UK agriculture MACC and to assess abatement potential for the 5th carbon budget period and to 2050”. Prepared for the Climate Change Committee. 274 pp. https://www.theccc.org.uk/publication/scotlands-rural-collage-sruc-ricardo-energy-and-environment2015-review-and-update-of-the-uk-agriculture-macc-to-assess-abatement-potential-for-the-fifth-carbon-budgetperiod-and-to-2050/.
Erb, K.-H., H. Haberl, and C. Plutzar, 2012: Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy, 47, 260–269, doi:10.1016/j.enpol.2012.04.066.
Erb, K.-H. et al., 2013: Bias in the attribution of forest carbon sinks. Nat. Clim. Change, 3(10) , 854–856, doi:10.1038/nclimate2004.
Erb, K.-H. et al., 2017: Land management: data availability and process understanding for global change studies. Glob. Change Biol. , 23(2) , 512–533, doi:10.1111/gcb.13443.
Erb, K.-H. et al., 2018: Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 553(7686) , 73–76, doi:10.1038/nature25138.
Ericksen, P. and T. Crane, 2018: The feasibility of low emissions development interventions for the East African livestock sector: Lessons from Kenya and Ethiopia. International Livestock Research Institute, Nairobi, Kenya, 25 pp.
Espejo, J.C. et al., 2018: Deforestation and Forest Degradation Due to Gold Mining in the Peruvian Amazon: A 34-Year Perspective. Remote Sens. , 10(12) , 1903, doi:10.3390/rs10121903.
Essl, F., K. Erb, S. Glatzel, and A. Pauchard, 2018: Climate change, carbon market instruments, and biodiversity: focusing on synergies and avoiding pitfalls. WIREs Clim. Change, 9(1) , doi:10.1002/wcc.486.
Esteve-Llorens, X., A.C. Dias, M.T. Moreira, G. Feijoo, and S. González-García, 2020: Evaluating the Portuguese diet in the pursuit of a lower carbon and healthier consumption pattern. Clim. Change, 162(4) , 2397–2409, doi:10.1007/s10584-020-02816-0.
European Commission, 2021: Freshwater Aquaculture in the EU. Publications Office of the European Union, Luxembourg, 83 pp.
European Commission-EU, 2021: New EU Forest Strategy for 2030.https://ec.europa.eu/environment/strategy/forest-strategy_en (Accessed October 1, 2021).
European Environment Agency, 2020: Annual European Union greenhouse gas inventory 1990-2018 and inventory report 2020. https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2020. European Environment Agency Copenhagen, Denmark (Accessed Oct 1, 2021).
Eurostat, 2020: Greenhouse gas emissions by source sector. Eurostat Metadata, Source EEA,. https://ec.europa.eu/eurostat/cache/metadata/en/env_air_gge_esms.htm (Accessed March 23, 2021).
Fa, J.E. et al., 2020: Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes. Front. Ecol. Environ. , 18(3) , 135–140, doi:10.1002/fee.2148.
Faber, I., N.A. Castellanos-Feijoó, L. Van de Sompel, A. Davydova, and F.J.A. Perez-Cueto, 2020: Attitudes and knowledge towards plant-based diets of young adults across four European countries. Exploratory survey. Appetite, 145, 104498, doi:10.1016/j.appet.2019.104498.
Fajardy, M., S. Chiquier, and N. Mac Dowell, 2018: Investigating the BECCS resource nexus: delivering sustainable negative emissions. Energy Environ. Sci. , 11(12) , 3408–3430, doi:10.1039/C8EE01676C.
Falconnier, G.N. et al., 2020: Modelling climate change impacts on maize yields under low nitrogen input conditions in sub‐Saharan Africa. Glob. Change Biol. , 26(10) , 5942–5964, doi:10.1111/gcb.15261.
Falk, D.A., 2017: Restoration Ecology, Resilience, and the Axes of Change. Ann. Missouri Bot. Gard. , 102(2) , 201–216, doi:10.3417/2017006.
Falk, D.A. et al., 2011: Multi-scale controls of historical forest-fire regimes: new insights from fire-scar networks. Front. Ecol. Environ. , 9(8) , 446–454, doi:10.1890/100052.
Fan, L. et al., 2019: Satellite-observed pantropical carbon dynamics. Nat. Plants, 5(9) , 944–951, doi:10.1038/s41477-019-0478-9.
Fang, Y., B. Singh, and B.P. Singh, 2015: Effect of temperature on biochar priming effects and its stability in soils. Soil Biol. Biochem. , 80, 136–145, doi:10.1016/j.soilbio.2014.10.006.
Fang, Y. et al., 2019: Interactive carbon priming, microbial response and biochar persistence in a Vertisol with varied inputs of biochar and labile organic matter. Eur. J. Soil Sci. , 70(5), 960-974, ejss.12808, doi:10.1111/ejss.12808.
FAO, 2007: State of the World’s Forests 2007. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 157 pp.
FAO, 2013: FAOSTAT-Statistical Database. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#home (Accessed September 13, 2021).
FAO, 2015: Global Forest Resources Assessment 2015. UN-FAO, Rome, Italy. https://www.fao.org/forest-resources-assessment/en/ (Accessed November 1, 2021).
FAO, 2016: The State of Food and Agriculture: Climate change, agriculture and food security. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. https://www.fao.org/3/i6030e/i6030e.pdf . (Accessed November 1, 2021).
FAO, 2017a: Agroforestry for landscape restoration: Exploring the potential of agroforestry to enhance the sustainability and resilience of degraded landscapes. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAO, 2017b: FAO Statistics: Food Balances (-2013, old methodology and population). Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat /en/#data/FBSH.
FAO, 2018a: Food supply – livestock and fish primary equivalent. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faost at/en/#data/CL.
FAO, 2018b: The future of food and agriculture – Alternative pathways to 2050. Global Perspectives Studies. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 224 pp.
FAO, 2018c: The State of the World’s Forests 2018: Forest Pathways to Sustainable Development . Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 28 pp.
FAO, 2019a: FAO Statistics, Emissions – Agriculture. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#data/GT (Accessed March 1, 2021).
FAO, 2019b: FAO Statistics, Annual population. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#data/OA.UN-FAO (Accessed October 11, 2021).
FAO, 2019c: The State of Food and Agriculture 2019: Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 182 pp.
FAO, 2019d: The State of the World’s Biodiversity for Food and Agriculture. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. https://www.fao.org/3/CA3129EN/CA3129EN.pdf (Accessed June 15, 2021).
FAO, 2020a: Global Forest Resources Assessment 2020. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. https://www.fao.org/forest-resources-assessment/2020/en/ (Accessed October 11, 2021).
FAO, 2020b: FAO Statistics: Land use. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#data/RL.
FAO, 2020c: FAO Statistics. Emissions – Biomass burning. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faost at/en/#data/GI.
FAO, 2020d: Global Forest Resources Assessment 2020 - Key Findings. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 16 pp. https://www.fao.org/3/CA8753EN/CA8753EN.pdf (Accessed October 11, 2021).
FAO, 2020e: Global Forest Resources Assessment 2020: Terms and Definition. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 32 pp.
FAO, 2021a: FAO Statistics, Emissions-Total. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faost at/en/#data/GT.
FAO, 2021b: FAO Statistics, Land use. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faost at/en/#data/RL.
FAO, 2021c: FAO Statistics: Crops and Livestock products. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#data/QCL.
FAO, 2021d: FAO Statistics: Food Balances (2014–).Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#data/FBS.
FAO, 2021e: FAO Statistics: Fertilizers by Nutrient. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/faostat/en/#data/RFN (Accessed July 21, 2021).
FAO and FILAC, 2021: Forest governance by indigenous and tribal peoples. An opportunity for climate action in Latin America and the Caribbean. Santiago. FAO. https://doi.org/10. 4060/cb2953en.
FAO and ITPS, 2015: Status of the World’s Soil Resources. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAO and UNEP, 2020 : The State of the World’s Forests 2020. Forests, biodiversity and people. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAO and WHO, 2019: Sustainable Healthy Diets Guiding Principles. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
Fargione, J.E. et al., 2018: Natural climate solutions for the United States. Sci. Adv. , 4(11) , doi:10.1126/sciadv.aat1869.
Fauzi et al., 2019: Contextualizing Mangrove Forest Deforestation in Southeast Asia Using Environmental and Socio-Economic Data Products. Forests, 10(11) , 952, doi:10.3390/f10110952.
Favero, A., R. Mendelsohn, and B. Sohngen, 2017: Using forests for climate mitigation: sequester carbon or produce woody biomass?Clim. Change, 144(2) , 195–206, doi:10.1007/s10584-017-2034-9.
Favero, A., A. Daigneault, and B. Sohngen, 2020: Forests: Carbon sequestration, biomass energy, or both?Sci. Adv. , 6(13) , doi:10.1126/sciadv.aay6792.
Fearnside, P.M., 2000: Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation. Clim. Change, 46, 115–158, doi.org/10.1023/A:1005569915357.
Fearnside, P.M., 2015: Highway Construction as a Force in the Destruction of the Amazon Forest. In: Handbook of Road Ecology[van der Ree, R., D.J. Smith, and C. Grilo (eds.)]. John Wiley & Sons, New Jersey, USA, pp. 414–424.
Fearnside, P.M. et al., 2009: Biomass and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia. For. Ecol. Manage. , 258(9) , 1968–1978, doi:10.1016/j.foreco.2009.07.042.
Feliciano, D., A. Ledo, J. Hillier, and D.R. Nayak, 2018: Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions?Agric. Ecosyst. Environ. , 254 (July 2017), 117–129, doi:10.1016/j.agee.2017.11.032.
Felker, M.E., I.W. Bong, W.H. DePuy, and L.F. Jihadah, 2017: Considering land tenure in REDD+ participatory measurement, reporting, and verification: A case study from Indonesia. PLoS One, 12(4) , e0167943, doi:10.1371/journal.pone.0167943.
Feng, L. et al., 2016: Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: sensitivity to measurement bias inside and outside Europe. Atmos. Chem. Phys. , 16(3) , 1289–1302, doi:10.5194/acp-16-1289-2016.
Fernando, A.L., J. Costa, B. Barbosa, A. Monti, and N. Rettenmaier, 2018: Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass and Bioenergy, 111, 174–186, doi:10.1016/j.biombioe.2017.04.005.
Ferretti-Gallon, K. and J. Busch, 2014: What Drives Deforestation and What Stops it? A Meta-Analysis of Spatially Explicit Econometric Studies. SSRN Electron. J. , 11(1) , Working Paper 361, Ctr for Global Development. Doi:10.2139/ssrn.2458040.
Fetzel, T. et al., 2017: Quantification of uncertainties in global grazing systems assessment. Global Biogeochem. Cycles, 31(7) , 1089–1102, doi:10.1002/2016GB005601.
Firbank, L.G. et al., 2018: Grand Challenges in Sustainable Intensification and Ecosystem Services. Front. Sustain. Food Syst. , 2,7: 2018.00007. doi:10.3389/fsufs.2018.00007.
Fischer, T.B., 2007: The Theory and Practice of Strategic Environmental Assessment . Routledge, Abingdon, Oxfordshire, UK, 218 pp.
FitzGerald, D.M. and Z. Hughes, 2019: Marsh Processes and Their Response to Climate Change and Sea-Level Rise. Annu. Rev. Earth Planet. Sci. , 47(1) , 481–517, doi:10.1146/annurev-earth-082517-010255.
Fixen, P.E., 2020: A brief account of the genesis of 4R nutrient stewardship. Agron. J. , 112(5) , 4511–4518, doi:10.1002/agj2.20315.
Flanagan, S.A. et al., 2019: Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland. Ecosphere, 10(6) , doi:10.1002/ecs2.2772.
Fleischman, F. et al., 2020: Pitfalls of Tree Planting Show Why We Need People-Centered Natural Climate Solutions. Bioscience, 70(11) , 947–950, doi:10.1093/biosci/biaa094.
Flyvbjerg, B., 2009: Survival of the unfittest: why the worst infrastructure gets built—and what we can do about it. Oxford Rev. Econ. Policy, 25(3) , 344–367, doi:10.1093/oxrep/grp024.
Forest Trends Ecosystem Marketplace, 2021: State of Forest Carbon Finance 2021. Forest Trends Ecosystem Marketplace, Washington, DC, USA, 78 pp.
Forsell, N. et al., 2016: Assessing the INDCs’ land use, land use change, and forest emission projections. Carbon Balance Manag. , 11(1) , 26, doi:10.1186/s13021-016-0068-3.
Fortmann, L., B. Sohngen, and D. Southgate, 2017: Assessing the Role of Group Heterogeneity in Community Forest Concessions in Guatemala’s Maya Biosphere Reserve. Land Econ. , 93 (3) , 503–526, doi:10.3368/le.93.3.503.
Frank, S. et al., 2017: Reducing greenhouse gas emissions in agriculture without compromising food security?Environ. Res. Lett. , 12(10) , 105004, doi:10.1088/1748-9326/aa8c83.
Frank, S. et al., 2018: Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat. Commun. , 9(1) , 1060, doi:10.1038/s41467-018-03489-1.
Frank, S. et al., 2019: Agricultural non-CO2 emission reduction potential in the context of the 1.5°C target. Nat. Clim. Change, 9(1) , 66–72, doi:10.1038/s41558-018-0358-8.
Frank, S. et al., 2020: Land-based climate change mitigation potentials within the agenda for sustainable development. Environ. Res. Lett. , 16(2) , 024006, doi:10.1088/1748-9326/abc58a.
Franzluebbers, A.J., G. Lemaire, P.C. de Faccio Carvalho, R.M. Sulc, and B. Dedieu, 2014: Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses. Eur. J. Agron. , 57, 1–3, doi:10.1016/j.eja.2014.05.004.
Friedlingstein, P. et al., 2020: Global Carbon Budget 2019. Earth Syst. Sci. Data, 11(4) , 1783–1838, doi:10.5194/essd-11-1783-2019.
Friess, D.A. et al., 2019: The State of the World’s Mangrove Forests: Past, Present, and Future. Annu. Rev. Environ. Resour. , 44(1) , 89–115, doi:10.1146/annurev-environ-101718-033302.
Fritsche, U.R. et al., 2017: Energy and Land Use Disclaimer – Global Land Outlook Working Paper. United Nations Convention to Combat Desertification (UNCCD), Bonn, Germany, 60 pp.
Fujimori, S. et al., 2016: Implication of Paris Agreement in the context of long-term climate mitigation goals. Springerplus, 5(1) , 1620, doi:10.1186/s40064-016-3235-9.
Fujimori, S. et al., 2019: A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. , 2(5) , 386–396, doi:10.1038/s41893-019-0286-2.
Furumo, P.R. and T.M. Aide, 2017: Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environ. Res. Lett. , 12(2) , 024008, doi:10.1088/1748-9326/aa5892.
Fuss, S. et al., 2018: Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. , 13 (6) , 063002, doi:10.1088/1748-9326/aabf9f.
Futter, M., N. Clarke, Ø. Kaste, and S. Valinia, 2019: The potential effects on water quality of intensified forest management for climate mitigation in Norway. Norwegian Institute for Water Research, Oslo, Norway, 7363–2019 pp.
Fyson, C.L. and M.L. Jeffery, 2019: Ambiguity in the Land Use Component of Mitigation Contributions Toward the Paris Agreement Goals. Earth’s Futur. , 7(8) , 873–891, doi:10.1029/2019EF001190.
Galford, G.L. et al., 2020: Agricultural development addresses food loss and waste while reducing greenhouse gas emissions. Sci. Total Environ. , 699, 134318, doi:10.1016/j.scitotenv.2019.134318.
Galik, C.S., 2020: A continuing need to revisit BECCS and its potential. Nat. Clim. Change, 10(1) , 2–3, doi:10.1038/s41558-019-0650-2.
Gallagher, R.V. et al., 2021: High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. Divers. Distrib. , 27(7) , 1166–1179, doi:10.1111/ddi.13265.
Galli, F. et al., 2020: How can policy processes remove barriers to sustainable food systems in Europe? Contributing to a policy framework for agri-food transitions. Food Policy, 96, 101871, doi:10.1016/j.foodpol.2020.101871.
Gan, J. and B.A. McCarl, 2007: Measuring transnational leakage of forest conservation. Ecol. Econ. , 64(2) , 423–432, doi:10.1016/j.ecolecon.2007.02.032.
Gao, Y. et al., 2020: Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. F. Crop. Res. , 249, 107763, doi:10.1016/j.fcr.2020.107763.
Gardiner, C.A., T.J. Clough, K.C. Cameron, H.J. Di, and G.R. Edwards, 2020: Ruminant urine patch nitrification and N2O flux: effects of urine aucubin rate in a laboratory trial. New Zeal. J. Agric. Res. , 63(1) , 65–72, doi:10.1080/00288233.2019.1626743.
Garnett, S.T. et al., 2018: A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. , 1(7) , 369–374, doi:10.1038/s41893-018-0100-6.
Garnett, T., 2014: Three perspectives on sustainable food security: efficiency, demand restraint, food system transformation. What role for life cycle assessment?J. Clean. Prod. , 73, 10–18, doi:10.1016/j.jclepro.2013.07.045.
Garnett, T. et al., 2013: Sustainable intensification in agriculture: Premises and policies. Science, 341(6161) , 33, doi:10.1126/science.1234485.
Garrett, R.D. et al., 2020: Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol. Soc. , 25 (1) , 24, doi:10.5751/ES-11412-250124.
Garrity, D.P and J. Bayala, 2019. Zinder: farmer-managed natural regeneration of Sahelian parklands in Niger. In: van Noordwijk M, ed. Sustainable development through trees on farms: agroforestry in its fifth decade. Bogor, Indonesia: World Agroforestry (ICRAF) Southeast Asia Regional Program, pp. 153–174.
Garrity, D.P. et al., 2010: Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Secur. , 2(3) , 197–214, doi:10.1007/s12571-010-0070-7.
Gasser, T. et al., 2020: Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences, 17(15) , 4075–4101, doi:10.5194/bg-17-4075-2020.
Gattinger, A. et al., 2012: Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. , 109(44) , 18226–18231, doi:10.1073/pnas.1209429109.
Gattuso, J. et al., 2018: Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci. , 5 (October), art337, doi:10.3389/fmars.2018.00337.
Geng, A., H. Yang, J. Chen, and Y. Hong, 2017: Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. For. Policy Econ. , 85, 192–200, doi:10.1016/j.forpol.2017.08.007.
Gerssen-Gondelach, S., B. Wicke, and A. Faaij, 2015: Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials. Food Energy Secur. , 4(1) , 36–75, doi:10.1002/fes3.53.
Gibbs, H.K. et al., 2015: Brazil’s Soy Moratorium. Science, 347(6220) , 377–378, doi:10.1126/science.aaa0181.
Gil, J., M. Siebold, and T. Berger, 2015: Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agric. Ecosyst. Environ. , 199, 394–406, doi:10.1016/j.agee.2014.10.008.
Gil, J.D.B., A.S. Cohn, J. Duncan, P. Newton, and S. Vermeulen, 2017: The resilience of integrated agricultural systems to climate change. WIREs Clim. Change, 8(4) , doi:10.1002/wcc.461.
Giller, K. and F. Ewert, 2019: Australian wheat beats the heat. Nat. Clim. Change, 9(3) , 189–190, doi:10.1038/s41558-019-0427-7.
Gingrich, S. et al., 2019: Hidden emissions of forest transitions: a socio-ecological reading of forest change. Curr. Opin. Environ. Sustain. , 38, 14–21, doi:10.1016/j.cosust.2019.04.005.
Ginsburg, CS. Keene, 2020: At a crossroads: consequential trends in recognition of community-based forest tenure from 2002-2017. China Econ. J. , 13 (2) , 223–248, doi:10.1080/17538963.2020.1755129.
Giri, C. et al., 2015: Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manage. , 148, 101–111, doi:10.1016/j.jenvman.2014.01.020.
Gitz, V. and P. Ciais, 2003: Amplifying effects of land-use change on future atmospheric CO2 levels. Global Biogeochem. Cycles, 17(1) , 1024 doi:10.1029/2002GB001963.
Gliessman, S., 2013: Agroecology: Growing the Roots of Resistance. Agroecol. Sustain. Food Syst. , 1(37) , 14, doi.org/10.1080/10440046.2012.736927.
Godfray, H.C.J. and T. Garnett, 2014: Food security and sustainable intensification. Philos. Trans. R. Soc. B Biol. Sci. , 369(1639) , 20120273, doi:10.1098/rstb.2012.0273.
Godfray, H.C.J. et al., 2018: Meat consumption, health, and the environment. Science, 361(6399) , doi:10.1126/science.aam5324.
Goh, K.M., 2011: Greater Mitigation of Climate Change by Organic than Conventional Agriculture: A Review. Biol. Agric. Hortic. , 27(2) , 205–229, doi:10.1080/01448765.2011.9756648.
Goldammer, J.G., 2016: Fire Management in Tropical Forests. In: Tropical Forestry Handbook[Pancel, L. and M. Köhl (eds.)]. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, pp. 2659–2710.
Goldewijk, K.K., A. Beusen, J. Doelman, and E. Stehfest, 2017: Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data, 9(2) , 927–953, doi:10.5194/essd-9-927-2017.
Goldstein, A. et al., 2020: Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change, 10(4) , 287–295, doi:10.1038/s41558-020-0738-8.
Gonzalez-Sanchez, E.J. et al., 2019: Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. , 190, 22–30, doi:10.1016/j.still.2019.02.020.
Goodwin, M.J., M.P. North, H.S.J. Zald, and M.D. Hurteau, 2020: Changing climate reallocates the carbon debt of frequent‐fire forests. Glob. Change Biol. , 26(11) , 6180–6189, doi:10.1111/gcb.15318.
Goss, M. et al., 2020: Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. , 15(9) , 094016, doi:10.1088/1748-9326/ab83a7.
Govaerts, B., K.D. Sayre, and J. Deckers, 2005: Stable high yields with zero tillage and permanent bed planting?F. Crop. Res. , 94 (1) , 33–42, doi:10.1016/j.fcr.2004.11.003.
Government of Alberta, 2021: Alberta Emission Offset System. https://www.alberta.ca/alberta-emission-offset-system.aspx. Edmonton, Alberta, Canada.
Government of Brazil, Amazon Fund. Brasilia, Brazil. http://www.amazon fund.gov.br/en/home/.
Grace, J., E. Mitchard, and E. Gloor, 2014: Perturbations in the carbon budget of the tropics. Glob. Change Biol. , 20(10) , 3238–3255, doi:10.1111/gcb.12600.
Grassi, G. et al., 2017: The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change, 7(3) , 220–226, doi:10.1038/nclimate3227.
Grassi, G. et al., 2018: Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nat. Clim. Change, 8(10) , 914–920, doi:10.1038/s41558-018-0283-x.
Grassi, G. et al., 2021: Critical adjustment of land mitigation pathways for assessing countries’ climate progress. Nat. Clim. Change, 11(5) , 425–434, doi:10.1038/s41558-021-01033-6.
Gren, I.-M. and A.Z. Aklilu, 2016: Policy design for forest carbon sequestration: A review of the literature. For. Policy Econ. , 70, 128–136, doi:10.1016/j.forpol.2016.06.008.
Griscom, B.W. et al., 2017: Natural climate solutions. Proc. Natl. Acad. Sci. , 114(44) , 11645–11650, doi:10.1073/pnas.1710465114.
Griscom, B.W. et al., 2020: National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. B Biol. Sci. , 375(1794) , 20190126, doi:10.1098/rstb.2019.0126.
Gromko, D. and G. Abdurasalova, 2019: Climate change mitigation and food loss and waste reduction: Exploring the business case. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Wageningen, The Netherlands, 46 pp. https://hdl.handle.net/10568/100165.
Grossi, G., P. Goglio, A. Vitali, and A.G. Williams, 2019: Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim. Front. , 9(1) , 69–76, doi:10.1093/af/vfy034.
Grubler, A. et al., 2018: A low energy demand scenario for meeting the 1.5°C target and sustainable development goals without negative emission technologies. Nat. Energy, 3(6) , 515–527, doi:10.1038/s41560-018-0172-6.
Guan, Z., Y. Xu, P. Gong, and J. Cao, 2018: The impact of international efforts to reduce illegal logging on the global trade in wood products. Int. Wood Prod. J. , 9(1) , 28–38, doi:10.1080/20426445.2017.1419541.
Guenet, B. et al., 2021: Can N2O emissions offset the benefits from soil organic carbon storage?Glob. Change Biol. , 27 (2) , 237–256, doi:10.1111/gcb.15342.
Gunsch, M.J. et al., 2018: Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region. Atmos. Chem. Phys. , 18(5) , 3701–3715, doi:10.5194/acp-18-3701-2018.
Günther, A. et al., 2020: Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. , 11(1) , 1644, doi:10.1038/s41467-020-15499-z.
Gunton, R.M., L.G. Firbank, A. Inman, and D.M. Winter, 2016: How scalable is sustainable intensification?Nat. Plants, 2(5) , 16065, doi:10.1038/nplants.2016.65.
Guo, K. et al., 2020: Establishment of an integrated decision-making method for planning the ecological restoration of terrestrial ecosystems. Sci. Total Environ. , 741, 139852, doi:10.1016/j.scitotenv.2020.139852.
Gupta, A., T. Pistorius, and M.J. Vijge, 2016: Managing fragmentation in global environmental governance: the REDD+ Partnership as bridge organization. Int. Environ. Agreements Polit. Law Econ. , 16(3) , 355–374, doi:10.1007/s10784-015-9274-9.
Gustavsson, L. et al., 2017: Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. , 67, 612–624, doi:10.1016/j.rser.2016.09.056.
Gütschow, J., L. Jeffery, R. Gieseke, and A. Günther, 2019: The PRIMAP-hist national historical emissions time series v2.1 (1850-2017). Earth Syst. Sci. Data, 8, 571–603, doi.org/10.5194/essd-8-571-2016.
Gwenzi, W., N. Chaukura, F.N.D. Mukome, S. Machado, and B. Nyamasoka, 2015: Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manage. , 150, 250–261, doi:10.1016/j.jenvman.2014.11.027.
Haberlie, A.M., W.S. Ashley, and T.J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Q.J.R. Meteorol. Soc. , 141 (688), 663–675, doi:10.1002/qj.2499.
Habib, G. and A.A. Khan, 2018: Assessment and Mitigation of Methane Emissions from Livestock Sector in Pakistan. Earth Syst. Environ. , 2(3) , 601–608, doi:10.1007/s41748-018-0076-4.
Haddad, N.M. et al., 2015: Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. , 1(2) , doi:10.1126/sciadv.1500052.
Hagemann, N. et al., 2017: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. , 8(1) , 1089, doi:10.1038/s41467-017-01123-0.
Haglund, E., J. Ndjeunga, L. Snook, and D. Pasternak, 2011: Dry land tree management for improved household livelihoods: Farmer managed natural regeneration in Niger. J. Environ. Manage. , 92(7) , 1696–1705, doi:10.1016/j.jenvman.2011.01.027.
Hamilton, S.E. and D. Casey, 2016: Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. , 25(6) , 729–738, doi:10.1111/geb.12449.
Hammar, T. and F. Levihn, 2020: Time-dependent climate impact of biomass use in a fourth generation district heating system, including BECCS. Biomass and Bioenergy, 138, 105606, doi:10.1016/j.biombioe.2020.105606.
Hamrick, K. and M. Gallant, 2017a: State of Forest Carbon Finance. Forest Trends Ecosystem Marketplace. Forest Trends’ Ecosystem Marketplace, Washington, DC, USA, 88 pp. https://www.forest-trends.org/wp-content/uploads/2018/01/doc_5715.pdf (Accessed November 21, 2021).
Hamrick, K. and M. Gallant, 2017b: Unlocking potential: State of the Voluntary Carbon Markets 2017. Forest Trends’ Ecosystem Marketplace, Washington, DC, USA, 52 pp.
Hamrick, K. and M. Gallant, 2018: Voluntary Carbon Markets Outlooks and Trends. https://www.forest-trends.org/publications/voluntary-carbon-markets/ (Accessed September 12, 2021).
Han Weng, Z. et al., 2017: Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Change, 7(5) , 371–376, doi:10.1038/nclimate3276.
Hanan, N.P., 2018: Agroforestry in the Sahel. Nat. Geosci. , 11(5) , 296–297, doi:10.1038/s41561-018-0112-x.
Hansen, J.H., L. Hamelin, A. Taghizadeh‐Toosi, J.E. Olesen, and H. Wenzel, 2020: Agricultural residues bioenergy potential that sustain soil carbon depends on energy conversion pathways. GCB Bioenergy, 12(11) , 1002–1013, doi:10.1111/gcbb.12733.
Hansen, M.C. et al., 2013: High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160) , 850–853, doi:10.1126/science.1244693.
Hanssen, S.V. et al., 2020: The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Change, 10(11) , 1023–1029, doi:10.1038/s41558-020-0885-y.
Hansis, E., S.J. Davis, and J. Pongratz, 2015: Relevance of methodological choices for accounting of land use change carbon fluxes. Global Biogeochem. Cycles, 29, 1230–1246, doi:10.1002/2014GB004997.
Harmsen, J.H.M. et al., 2019: Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environ. Sci. Policy, 99 (March), 136–149, doi:10.1016/j.envsci.2019.05.013.
Harper, A.B. et al., 2018: Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. , 9(1) , 2938, doi:10.1038/s41467-018-05340-z.
Harris, N.L. et al., 2021: Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change, 11(3) , 234–240, doi:10.1038/s41558-020-00976-6.
Hasegawa, T. and Y. Matsuoka, 2012: Greenhouse gas emissions and mitigation potentials in agriculture, forestry and other land use in Southeast Asia. J. Integr. Environ. Sci. , 9(sup1) , 159–176, doi:10.1080/1943815X.2012.701647.
Hasegawa, T., S. Fujimori, R. Boer, G. Immanuel, and T. Masui, 2016: Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia. Sustainability, 8(12) , 1283, doi:10.3390/su8121283.
Hasegawa, T. et al., 2018: Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change, 8(8) , 699–703, doi:10.1038/s41558-018-0230-x.
Hasegawa, T. et al., 2020: Food security under high bioenergy demand toward long-term climate goals. Clim. Change, 163(3) , 1587–1601, doi:10.1007/s10584-020-02838-8.
Hasegawa, T. et al., 2021: Land-based implications of early climate actions without global net-negative emissions. Nat. Sustain. , 4(12) , 1052–1059, doi:10.1038/s41893-021-00772-w.
Hawken, P., 2017: Drawdown: the most comprehensive plan ever proposed to reverse global warming. Penguin, Washington, DC, USA. https://drawdown.org/the-book (Accessed September 12, 2020).
He, Y. et al., 2017: Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9(4) , 743–755, doi:10.1111/gcbb.12376.
Hedley, C., 2015: The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. , 95(1) , 12–19, doi:10.1002/jsfa.6734.
Heilmayr, R., C. Echeverría, and E.F. Lambin, 2020: Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. , 3(9) , 701–709, doi:10.1038/s41893-020-0547-0.
Heinrich, V.H.A. et al., 2021: Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. , 12(1) , 1785, doi:10.1038/s41467-021-22050-1.
Henderson, B., C. Frezal, and E. Flynn, 2020: A survey of GHG mitigation policies for the agriculture, forestry and other land use sector. OECD Publishing, Paris, France, 88 pp.
Henderson, B.B. et al., 2015: Greenhouse gas mitigation potential of the world’s grazing lands: Modeling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. , 207, 91–100, doi:10.1016/j.agee.2015.03.029.
Hendrickson, J.R., J.D. Hanson, D.L. Tanaka, and G. Sassenrath, 2008: Principles of integrated agricultural systems: Introduction to processes and definition. Renew. Agric. Food Syst. , 23(04) , 265–271, doi:10.1017/S1742170507001718.
Herr, D., M. von Unger, D. Laffoley, and A. McGivern, 2017: Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar. Freshw. Ecosyst. , 27(sup1) , 116–129, doi:10.1002/aqc.2793.
Herrera, D., A. Pfaff, and J. Robalino, 2019: Impacts of protected areas vary with the level of government: Comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl. Acad. Sci. , 116(30) , 14916–14925, doi:10.1073/pnas.1802877116.
Herrero, M. et al., 2013: Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. , 110(52) , 20888–20893, doi:10.1073/pnas.1308149110.
Herrero, M. et al., 2016: Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change, 6(5) , 452–461, doi:10.1038/nclimate2925.
Hijbeek, R., M. van Loon, and M. van Ittersum, 2019: Fertiliser use and soil carbon sequestration: trade-offs and opportunities. CGIAR Research Program on Climate Change, Agriculture and Food Security, Wageningen, The Netherlands, 23 pp.
Hirales-Cota, M., J. Espinoza-Avalos, B. Schmook, A. Ruiz-Luna, and R. Ramos-Reyes, 2010: Drivers of mangrove deforestation in Mahahual-Xcalak, Quintana Roo, southeast Mexico. Ciencias Mar. , 36(2) , doi:10.7773/cm.v36i2.1653.
Hirsch, A.L. et al., 2018: Modelled biophysical impacts of conservation agriculture on local climates. Glob. Change Biol. , 24(10) , 4758–4774, doi:10.1111/gcb.14362.
Hisano, M., E.B. Searle, and H.Y.H. Chen, 2018: Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. , 93(1) , 439–456, doi:10.1111/brv.12351.
Hlásny, T. et al., 2021: Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Reports, 7(3) , 138–165, doi:10.1007/s40725-021-00142-x.
HLPE, 2014: Food losses and waste in the context of sustainable food systems. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security, Rome Italy, 117 pp. http://www.fao.org/3/a-i3901e.pdf (Accessed October 12, 2021).
HLPE, 2019: Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. Committee on World Food Security, Rome, Italy, 1–9 pp.
Hoa, N.T., T. Hasegawa, and Y. Matsuoka, 2014: Climate change mitigation strategies in agriculture, forestry and other land use sectors in Vietnam. Mitig. Adapt. Strateg. Glob. Change, 19, 15–32, doi:10.1007/s11027-012-9424-0.
Hochard, J.P., S. Hamilton, and E.B. Barbier, 2019: Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. , 116(25) , 12232–12237, doi:10.1073/pnas.1820067116.
Hof, C. et al., 2018: Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl. Acad. Sci. , 115(52) , 13294–13299, doi:10.1073/pnas.1807745115.
Holl, K.D. and P.H.S. Brancalion, 2020: Tree planting is not a simple solution. Science, 368(6491) , 580–581, doi:10.1126/science.aba8232.
Honan, M., X. Feng, J.M. Tricarico, and E. Kebreab, 2021: Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim. Prod. Sci. , doi:10.1071/AN20295.
Honey-Roses, J., K. Baylis, and M.I. Ramirez, 2011: A Spatially Explicit Estimate of Avoided Forest Loss. Conserv. Biol. , 25(5) , 1032–1043, doi:10.1111/j.1523-1739.2011.01729.x.
Hooijer, A. et al., 2010: Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5) , 1505–1514, doi:10.5194/bg-7-1505-2010.
Houghton, R.A and A.A. Nassikas, 2017: Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochem. Cycles, 31(3) , 456–472, doi:10.1002/2016GB005546.
Howard, J. et al., 2017: Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. , 15(1) , 42–50, doi:10.1002/fee.1451.
Hristov, A.N. et al., 2013: Mitigation of Greenhouse gas emissions in livestock production: A review of technical options for non-CO2 emissions[Gerber, P.J., B. Henderson, and H.P.S. Makkar (eds.)]. FAO, Rome, Italy, 352 pp. https://dialnet.unirioja.es/servlet/libro?codigo=317825.
Hristov, A.N. et al., 2015: An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. , 112(34) , 10663–10668, doi:10.1073/pnas.1504124112.
Hugelius, G. et al., 2020: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. , 117(34) , 20438–20446, doi:10.1073/pnas.1916387117.
Humpenöder, F. et al., 2018: Large-scale bioenergy production: how to resolve sustainability trade-offs?Environ. Res. Lett. , 13(2) , 024011, doi:10.1088/1748-9326/aa9e3b.
Humpenöder, F. et al., 2020: Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. , 15(10) , 104093, doi:10.1088/1748-9326/abae2a.
Hund, K., D. La Porta, T.P. Fabregas, T. Laing, and J. Drexhage, 2020: Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition. World Bank, Washington, DC, USA, 112 pp.
Hunt, D., S. Bittman, M. Chantigny, and R. Lemke, 2019: Year-Round N2O Emissions From Long-Term Applications of Whole and Separated Liquid Dairy Slurry on a Perennial Grass Sward and Strategies for Mitigation. Front. Sustain. Food Syst. , 3, 2019:00086 doi:10.3389/fsufs.2019.00086.
Huppmann, D., J. Rogelj, E. Kriegler, V. Krey, and K. Riahi, 2018: A new scenario resource for integrated 1.5°C research. Nat. Clim. Change, 8(12) , 1027–1030, doi:10.1038/s41558-018-0317-4.
Hurlbert, M., J. Krishnaswamy, E. Davin, F.X. Johnson, C.F. Mena, J. Morton, S. Myeong, D. Viner, K. Warner, A. Wreford, S. Zakieldeen, and Z. Zommers, 2019: Risk Management and Decision making in Relation to Sustainable Development. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 673–800.
Hurmekoski, E. et al., 2020: Impact of structural changes in wood‐using industries on net carbon emissions in Finland. J. Ind. Ecol. , 24(4) , 899–912, doi:10.1111/jiec.12981.
Hurteau, M.D. and M.L. Brooks, 2011: Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems. Bioscience, 61(2) , 139–146, doi:10.1525/bio.2011.61.2.9.
Hurteau, M.D., J.B. Bradford, P.Z. Fulé, A.H. Taylor, and K.L. Martin, 2014: Climate change, fire management, and ecological services in the southwestern US. For. Ecol. Manage. , 327, 280–289, doi:10.1016/j.foreco.2013.08.007.
Hurteau, M.D., M.P. North, G.W. Koch, and B.A. Hungate, 2019: Opinion: Managing for disturbance stabilizes forest carbon. Proc. Natl. Acad. Sci. , 116(21) , 10193–10195, doi:10.1073/pnas.1905146116.
Hurtt, G.C. et al., 2020: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. , 13 (11) , 5425–5464, doi:10.5194/gmd-13-5425-2020.
Hussain, S. et al., 2015: Rice management interventions to mitigate greenhouse gas emissions: a review. Environ. Sci. Pollut. Res. , 22(5) , 3342–3360, doi:10.1007/s11356-014-3760-4.
Hwang, O. et al., 2018: Efficacy of Different Biochars in Removing Odorous Volatile Organic Compounds (VOCs) Emitted from Swine Manure. ACS Sustain. Chem. Eng. , 6(11) , 14239–14247, doi:10.1021/acssuschemeng.8b02881.
ICFPA, 2021: ICFPA2020–2021Sustainability Progress Report . International Council of Forest & Paper Associations, 19 pp.
IEA, 2019: World Energy Outlook 2019 – Analysis – IEA. International Energy Agency, Paris, France, 810 pp. https://www.iea.org/reports/world-energy-outlook-2019.
IFOAM, 2016: Organic Farming, climate change mitigation and beyond reducing the environmental impacts of eu agriculture. IFOAM EU, Brussels, Belgium, 5 pp.
Ilstedt, U. et al., 2016: Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. , 6(1) , 21930, doi:10.1038/srep21930.
Im, S., S.O. Petersen, D. Lee, and D.-H. Kim, 2020: Effects of storage temperature on CH4 emissions from cattle manure and subsequent biogas production potential. Waste Manag. , 101, 35–43, doi:10.1016/j.wasman.2019.09.036.
Ingalls, M.L., P. Meyfroidt, P.X. To, M. Kenney-Lazar, and M. Epprecht, 2018: The transboundary displacement of deforestation under REDD+: Problematic intersections between the trade of forest-risk commodities and land grabbing in the Mekong region. Glob. Environ. Change, 50, 255–267, doi:10.1016/j.gloenvcha.2018.04.003.
INPE, 2021: PRODES, Amazon, Monitoring of Deforestation in the Brazilian Amazon Forest by Satellite, Earth Observation, National Institute for Space Research, Government of Brazil. http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (Accessed April 12, 2021).
IPBES 2016: The methodological assessment report on scenarios and models of biodiversity and ecosystem services[S. Ferrier, K.N. Ninan, P. Leadley, R. Alkemade, and L.A. Acosta, et al. (eds.)]. IPBES Secretariat, Bonn, Germany, 348 pp.
IPBES, 2018a: The IPBES assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[Montanarella, L., R. Scholes, and A. Brainich (eds.)]. IPBES Secretariat, Bonn, Germany, 744pp.
IPBES, 2018b: Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for Asia and the Pacific of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[Karki M., S. Senaratna Sellamuttu, S. Okayasu, W. Suzuki, L.A. Acosta, et al. (eds.)]. IPBES secretariat, Bonn, Germany, 41 pp.
IPBES, 2018c: Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for Africa of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[E. Archer, L.E. Dziba, K.J. Mulongoy, M.A. Maoela, M. Walters, et al. (eds.)]. IPBES secretariat, Bonn, Germany, 49 pp.
IPBES, 2018d: Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[Fischer M., M. Rounsevell, A. Torre-Marin Rando, A. Mader, A. Church, et al. (eds.)]. IPBES secretariat, Bonn, Germany, 48pp.
IPBES, 2018e: Summary for Policy Makers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[Scholes, R., L. Montanarella, A. Brainich, N. Barger, B. ten Brink et al., (eds.)]. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Bonn, Germany.
IPBES, 2019a: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[Díaz, S., J. Settele, E.S. Brondízio, H.T. Ngo, M. Guèze, et al. (eds.)]. IPBES secretariat, Bonn, Germany, 56 pp.
IPBES, 2019b: Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services[Brondízio E.S, J. Settele, S. Díaz, and H.T. Ngo (eds.)]. IPBES secretariat, Bonn, Germany, 1144 pp.
IPBES-IPCC, 2021: IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. IPBES and IPCC, Bonn, Germany, 28 pp.
IPCC, 1996: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Geneva, Switzerland, 190 pp.
IPCC, 2006: 2006 IPCC – Guidelines for National Greenhouse Gas Inventories[Eggleston H.S., L. Buendia, K. Miwa, T. Ngara, and K. Tanabe K. (eds.)]. Prepared by the National Greenhouse Gas Inventories Programme. Institute for Global Environmental Strategies (IGES), Kanagawa, Japan.
IPCC, 2010: Revisiting the use of managed land as a proxy for estimating national anthropogenic emissions and removals. [Eggleston, H.S., N. Srivastava, K.Tanabe, and J. Baasansuren (eds.)]. Institute for Global Environmental Strategies (IGES), Kanagawa, Japan, 56 pp.
IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA.
IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. [Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA.
Islam, S.M.M. et al., 2018: Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Sci. Rep. , 8(1) , 17623, doi:10.1038/s41598-018-35939-7.
Ivanova, D. et al., 2020: Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. , 15(9) , 093001, doi:10.1088/1748-9326/ab8589.
Jackson, R.B. et al., 2020: Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. , 15(7) , 071002, doi:10.1088/1748-9326/ab9ed2.
Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan, and G. Venkataraman, 2018: CRISPR for Crop Improvement: An Update Review. Front. Plant Sci. , 9, doi:10.3389/fpls.2018.00985.
Jamnadass, R. et al., 2020: Enhancing African orphan crops with genomics. Nat. Genet. , 52(4) , 356–360, doi:10.1038/s41588-020-0601-x.
Janssen, A., 2020: These farmers deserve support . Wageningen World, Wageningen, The Netherlands, 44–45 pp. https://edepot .wur.nl/530828.
Janssens-Maenhout, G. et al., 2019: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data, 11(3) , 959–1002, doi:10.5194/essd-11-959-2019.
Jasinevičius, G., M. Lindner, P. Verkerk, and M. Aleinikovas, 2017: Assessing Impacts of Wood Utilisation Scenarios for a Lithuanian Bioeconomy: Impacts on Carbon in Forests and Harvested Wood Products and on the Socio-Economic Performance of the Forest-Based Sector. Forests, 8(4) , 133, doi:10.3390/f8040133.
Jauhiainen, J., S. Limin, H. Silvennoinen, and H. Vasander, 2008: Carbon Dioxide and Methane Fluxes in Drained Tropical Peat Before and After Hydrological Restoration. Ecology, 89(12) , 3503–3514, doi:10.1890/07-2038.1.
Jayachandran, S. et al., 2017: Cash for carbon: A randomized trial of payments for ecosystem services to reduce deforestation. Science, 357(6348) , 267–273, doi:10.1126/science.aan0568.
Jayanegara, A. et al., 2018: Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital. J. Anim. Sci. , 17(3) , 650–656, doi:10.1080/1828051X.2017.1404945.
Jayasundara, S., J.A.D. Ranga Niroshan Appuhamy, E. Kebreab, and C. Wagner-Riddle, 2016: Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: An updated review. Can. J. Anim. Sci. , 96(3) , 306–331, doi:10.1139/cjas-2015-0111.
Jeffery, S. et al., 2017: Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. , 12(5) , 053001, doi:10.1088/1748-9326/aa67bd.
Jennerjahn, T.C. et al., 2017: Mangrove Ecosystems under Climate Change. In: Mangrove Ecosystems: A Global Biogeographic Perspective. Springer International Publishing, Cham, Switzerland, pp. 211–244.
Jensen, E.S., G. Carlsson, and H. Hauggaard-Nielsen, 2020: Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. , 40(1) , 5, doi:10.1007/s13593-020-0607-x.
Jia, G., E. Shevliakova, P. Artaxo, N. De Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin, R. Sukumar, and L. Verchot, 2019: Land–climate interactions. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 131–247.
Jiang, C., K. Guan, M. Khanna, L. Chen, and J. Peng, 2021: Assessing Marginal Land Availability Based on Land Use Change Information in the Contiguous United States. Environ. Sci. Technol. , 55(15) , 10794–10804, doi:10.1021/acs.est.1c02236.
Jiang, W., M.G. Jacobson, and M.H. Langholtz, 2019: A sustainability framework for assessing studies about marginal lands for planting perennial energy crops. Biofuels, Bioprod. Biorefining, 13(1) , 228–240, doi:10.1002/bbb.1948.
Jilani, T., T. Hasegawa, and Y. Matsuoka, 2015: The future role of agriculture and land use change for climate change mitigation in Bangladesh. Mitig. Adapt. Strateg. Glob. Change, 20(8) , 1289–1304, doi:10.1007/s11027-014-9545-8.
Joffre, R., J. Vacher, C. de los Llanos, and G. Long, 1988: The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor. Syst. , 6(1–3) , 71–96, doi:10.1007/BF02344747.
Johnson, N. et al., 2019: Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?Water, 11(11) , 2223, doi:10.3390/w11112223.
Johnsson, F., F. Normann, and E. Svensson, 2020: Marginal Abatement Cost Curve of Industrial CO2Capture and Storage – A Swedish Case Study. Front. Energy Res. , 8, doi:10.3389/fenrg.2020.00175.
Johnston, A.M. and T.W. Bruulsema, 2014: 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. , 83, 365–370, doi:10.1016/j.proeng.2014.09.029.
Johnston, C.M.T. and V.C. Radeloff, 2019: Global mitigation potential of carbon stored in harvested wood products. Proc. Natl. Acad. Sci. , 116(29) , 14526–14531, doi:10.1073/pnas.1904231116.
Jolly, W.M. et al., 2015: Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. , 6(1) , 7537, doi:10.1038/ncomms8537.
Jonker, A. et al., 2018: Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers1. J. Anim. Sci. , 96(8) , 3031–3042, doi:10.1093/jas/sky187.
Joosten, H., 2009: The Global Peatland CO2Picture. Wetlands International, Wageningen, The Netherlands, 36 pp.
Junginger, H.M. et al., 2019: The future of biomass and bioenergy deployment and trade: a synthesis of 15 years IEA Bioenergy Task 40 on sustainable bioenergy trade. Biofuels, Bioprod. Biorefining, 13(2) , 247–266, doi:10.1002/bbb.1993.
Kalies, E. and L.L. Yocom Kent, 2016: Tamm Review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manage. , 375, 84–95, doi:10.1016/j.foreco.2016.05.021.
Kalliokoski, T. et al., 2020: Mitigation Impact of Different Harvest Scenarios of Finnish Forests That Account for Albedo, Aerosols, and Trade-Offs of Carbon Sequestration and Avoided Emissions. Front. For. Glob. Change, 3, doi:10.3389/ffgc.2020.562044.
Kallio, I., A. Marrit and B. Solberg, 2018: Leakage of forest harvest changes in a small open economy: case Norway. Scand. J. For. Res. , 33(5) , 502–510, doi:10.1080/02827581.2018.1427787.
Kalt, G. et al., 2019: Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?GCB Bioenergy, 11(11) , 1283–1297, doi:10.1111/gcbb.12626.
Kalt, G. et al., 2020: Greenhouse gas implications of mobilizing agricultural biomass for energy: a reassessment of global potentials in 2050 under different food-system pathways. Environ. Res. Lett. , 15(3) , 034066, doi:10.1088/1748-9326/ab6c2e.
Kammann, C. et al., 2017: Biochar as a Tool to Reduce the Agricultural Greenhouse Gas Burden – Knowns, Unknowns and Future Research Needs. J. Environ. Eng. Landsc. Manag. , 25(2) , 114–139, doi:10.3846/16486897.2017.1319375.
Kansanga, M.M. and I. Luginaah, 2019: Agrarian livelihoods under siege: Carbon forestry, tenure constraints and the rise of capitalist forest enclosures in Ghana. World Dev. , 113, 131–142, doi:10.1016/j.worlddev.2018.09.002.
Kaparaju, P. and J. Rintala, 2011: Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland. Renew. Energy, 36(1) , 31–41, doi:10.1016/j.renene.2010.05.016.
Karlsson, M., E. Alfredsson, and N. Westling, 2020: Climate policy co-benefits: a review. Clim. Policy, 20(3) , 292–316, doi:10.1080/14693062.2020.1724070.
Kashangaki, J. and P. Ericksen, 2018: Cost–benefit analysis of fodder production as a low emissions development strategy for the Kenyan dairy sector. ILRI, Nairobi, Kenya, 40 pp. http://cgspace.cgiar.org/rest/bitstreams/158438/retrieve.
Kassam, AL. Kassam, 2020: Rethinking Food and Agriculture: New Ways Forward. Woodhead Publishing, 476 pp.
Kastner, T., K.-H. Erb, and S. Nonhebel, 2011: International wood trade and forest change: A global analysis. Glob. Environ. Change, 21(3) , 947–956, doi:10.1016/j.gloenvcha.2011.05.003.
Kätterer, T. et al., 2019: Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. F. Crop. Res. , 235, 18–26, doi:10.1016/j.fcr.2019.02.015.
Katwijk, M.M. et al., 2016: Global analysis of seagrass restoration: the importance of large‐scale planting. J. Appl. Ecol. , 53(2) , 567–578, doi:10.1111/1365-2664.12562.
Kauffman, J.B. et al., 2020: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. , 90(2) , doi:10.1002/ecm.1405.
Kavanagh, I. et al., 2019: Mitigation of ammonia and greenhouse gas emissions from stored cattle slurry using acidifiers and chemical amendments. J. Clean. Prod. , 237, 117822, doi:10.1016/j.jclepro.2019.117822.
Keeley, J.E., P. van Mantgem, and D.A. Falk, 2019: Fire, climate and changing forests. Nat. Plants, 5(8) , 774–775, doi:10.1038/s41477-019-0485-x.
Kelleway, J.J. et al., 2017: Review of the ecosystem service implications of mangrove encroachment into salt marshes. Glob. Change Biol. , 23 (10) , 3967–3983, doi:10.1111/gcb.13727.
Kennedy, H., D.M. Alongi, A. Karim, G. Chen, G.L. Chmura, S. Crooks, J.G. Kairo, B. Liao, and G. Lin, 2014: Chapter 4: Coastal Wetlands. In: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. [Hiraishi, T., T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, and T. Troxler (eds.)]. IPCC, Geneva, Switzerland, pp. 1–55.
Keramidas, K. et al., 2018: Global Energy and Climate Outlook 2018: Sectoral mitigation options towards a low-emissions economy – Global context to the EU strategy for long-term greenhouse gas emissions reduction. European Union (EU), Luxembourg, 200 pp.
Khanna, M., P. Dwivedi, and R. Abt, 2017: Is Forest Bioenergy Carbon Neutral or Worse than Coal? Implications of Carbon Accounting Methods. Int. Rev. Environ. Resour. Econ. , 10(3–4) , 299–346, doi:10.1561/101.00000089.
Kiggundu, N. et al., 2019: Greenhouse gas emissions from Uganda’s cattle corridor farming systems. Agric. Syst. , 176, 102649, doi:10.1016/j.agsy.2019.102649.
Killeen, T.J., 2007: A Perfect Storm in the Amazon Wilderness: Success and Failure in the Fight to Save an Ecosystem of Critical Importance to the Planet . The White Horse Press, Cambridgeshire, UK. 160 p.
Kim, J., G. Yoo, D. Kim, W. Ding, and H. Kang, 2017a: Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl. Soil Ecol. , 117–118, 57–62, doi:10.1016/j.apsoil.2017.05.006.
Kim, J.B. et al., 2017b: Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios. Environ. Res. Lett. , 12(4) , 045001, doi:10.1088/1748-9326/aa63fc.
Kinley, R.D. et al., 2020: Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. , 259, 120836, doi:10.1016/j.jclepro.2020.120836.
Kirchmann, H., 2019: Why organic farming is not the way forward. Outlook Agric. , 48(1) , 22–27, doi:10.1177/0030727019831702.
Kirchmeier‐Young, M.C., N.P. Gillett, F.W. Zwiers, A.J. Cannon, and F.S. Anslow, 2019: Attribution of the Influence of Human‐Induced Climate Change on an Extreme Fire Season. Earth’s Futur. , 7 (1) , 2–10, doi:10.1029/2018EF001050.
Kirchner, M. et al., 2015: Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies. Ecol. Econ. , 109, 161–174, doi:10.1016/j.ecolecon.2014.11.005.
Klein, D., C. Wolf, C. Schulz, and G. Weber-Blaschke, 2015: 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. Int. J. Life Cycle Assess. , 20(4) , 556–575, doi:10.1007/s11367-015-0847-1.
Kleinschroth, F. and J.R. Healey, 2017: Impacts of logging roads on tropical forests. Biotropica, 49(5) , 620–635, doi:10.1111/btp.12462.
Kongsager, R., 2017: Barriers to the Adoption of Alley Cropping as a Climate-Smart Agriculture Practice: Lessons from Maize Cultivation among the Maya in Southern Belize. Forests, 8(7) , 260, doi:10.3390/f8070260.
Koornneef, J. et al., 2012: Global potential for biomass and carbon dioxide capture, transport and storage up to 2050. Int. J. Greenh. Gas Control, 11, 117–132, doi:10.1016/j.ijggc.2012.07.027.
Kösler, J.E., O.C. Calvo, J. Franzaring, and A. Fangmeier, 2019: Evaluating the ecotoxicity of nitrification inhibitors using terrestrial and aquatic test organisms. Environ. Sci. Eur. , 31(1) , 91, doi:10.1186/s12302-019-0272-3.
Kram, T., D. van Vuuren, and E. Stehfest, 2014: Drivers, Chapter 3, In: Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model description and policy applications. [Stehfest, E., D. Van Vuuren, T. Kram, and L. Bouwman (eds.)]. PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands. 370p.
Krause, A. et al., 2017: Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 14(21) , 4829–4850, doi:10.5194/bg-14-4829-2017.
Kraxner, F. et al., 2017: Mapping certified forests for sustainable management – A global tool for information improvement through participatory and collaborative mapping. For. Policy Econ. , 83, 10–18, doi:10.1016/j.forpol.2017.04.014.
Kreidenweis, U. et al., 2016: Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environ. Res. Lett. , 11(8) , 085001, doi:10.1088/1748-9326/11/8/085001.
Kriegler, E. et al., 2015: Diagnostic indicators for integrated assessment models of climate policy. Technol. Forecast. Soc. Change, 90(PA) , 45–61, doi:10.1016/j.techfore.2013.09.020.
Kritee, K. et al., 2018: High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl. Acad. Sci. , 115(39) , 9720–9725, doi:10.1073/pnas.1809276115.
Krofcheck, D.J., M.D. Hurteau, R.M. Scheller, and E.L. Loudermilk, 2018: Prioritizing forest fuels treatments based on the probability of high‐severity fire restores adaptive capacity in Sierran forests. Glob. Change Biol. , 24(2) , 729–737, doi:10.1111/gcb.13913.
Krofcheck, D.J., C.C. Remy, A.R. Keyser, and M.D. Hurteau, 2019: Optimizing Forest Management Stabilizes Carbon Under Projected Climate and Wildfires. J. Geophys. Res. Biogeosciences, 124(10) , 3075–3087, doi:10.1029/2019JG005206.
Krug, J.H.A., 2018: Accounting of GHG emissions and removals from forest management: a long road from Kyoto to Paris. Carbon Balance Manag. , 13(1) , 1, doi:10.1186/s13021-017-0089-6.
Ku-Vera, J.C. et al., 2020: Review: Strategies for enteric methane mitigation in cattle fed tropical forages. Animal, 14, s453–s463, doi:10.1017/S1751731120001780.
Kubiszewski, I., R. Costanza, S. Anderson, and P. Sutton, 2017: The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. , 26, 289–301, doi:10.1016/j.ecoser.2017.05.004.
Kumar, B.M. and P.K.R. Nair, 2011: Carbon Sequestration Potential of Agroforestry Systems. [Kumar, B.M. and P.K.R. Nair (eds.)]. Springer Netherlands, Dordrecht, The Netherlands. 298 p.
Kupper, T. et al., 2020: Ammonia and greenhouse gas emissions from slurry storage – A review. Agric. Ecosyst. Environ. , 300, 106963, doi:10.1016/j.agee.2020.106963.
Kurz, W.A. et al., 2008: Mountain pine beetle and forest carbon feedback to climate change. Nature, 452(7190) , 987–990, doi:10.1038/nature06777.
Kuyah, S. et al., 2019: Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. , 39(5) , 47, doi:10.1007/s13593-019-0589-8.
Laborde, D., S. Murphy, M. Parent, J. Porciello, and S.C, 2020: Ceres2030: Sustainable Solutions to End Hunger – Summary Report . Cornell University, IFPRI and IISD, New York, USA, 40 pp.
Lai, L. et al., 2016: Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. , 2 (11) , doi:10.1126/sciadv.1601063.
Lal, R., 2015: Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. , 70(3) , 55A-62A, doi:10.2489/jswc.70.3.55A.
Lal, R., 2020: Integrating Animal Husbandry With Crops and Trees. Front. Sustain. Food Syst. , 4, doi:10.3389/fsufs.2020.00113.
Lal, R. et al., 2018: The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. , 73(6) , 145A-152A, doi:10.2489/jswc.73.6.145A.
Lambin, E.F. et al., 2018: The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change, 8(2) , 109–116, doi:10.1038/s41558-017-0061-1.
Lampkin, N.H., et al., 2017: The role of agroecology in sustainable intensification. Asp. Appl. Biol. , 136, 53–62.
Landholm, D.M. et al., 2019: Reducing deforestation and improving livestock productivity: greenhouse gas mitigation potential of silvopastoral systems in Caquetá. Environ. Res. Lett. , 14(11) , 114007, doi:10.1088/1748-9326/ab3db6.
Lanigan, G.J. et al., 2018: An Analysis of Abatement Potential of Greenhouse Gas Emissions in Irish Agriculture 2021-2030. Agriculture and Food Development Authority, Carlow, Ireland, 1–80 pp.
Lark, T.J., J. Meghan Salmon, and H.K. Gibbs, 2015: Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett. , 10(4) , 044003, doi:10.1088/1748-9326/10/4/044003.
Latka, C. et al., 2021: Paying the price for environmentally sustainable and healthy EU diets. Glob. Food Sec. , 28, 100437, doi:10.1016/j.gfs.2020.100437.
Laurance, W. and A. Balmford, 2013: A global map for road building. Nature, 495(7441) , 308–309, doi:10.1038/495308a.
Laurance, W.F. and I.B.B. Arrea, 2017: Roads to riches or ruin?Science, 358(6362) , 442–444, doi:10.1126/science.aao0312.
Laurance, W.F. et al., 2001: The Future of the Brazilian Amazon. Science, 291(5503) , 438–439, doi:10.1126/science.291.5503.438.
Laurance, W.F., M. Goosem, and S.G.W. Laurance, 2009: Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. , 24(12) , 659–669, doi:10.1016/j.tree.2009.06.009.
Laurance, W.F. et al., 2014a: A global strategy for road building. Nature, 513(7517) , 229–232, doi:10.1038/nature13717.
Laurance, W.F., J. Sayer, and K.G. Cassman, 2014b: Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. , 29(2) , 107–116, doi:10.1016/j.tree.2013.12.001.
Laurance, W.F. et al., 2015a: Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. , 25(7) , R259–R262, doi:10.1016/j.cub.2015.02.050.
Laurance, W.F., S. Sloan, L. Weng, and J.A. Sayer, 2015b: Estimating the Environmental Costs of Africa’s Massive “Development Corridors”. Curr. Biol. , 25(24) , 3202–3208, doi:10.1016/j.cub.2015.10.046.
Lauri, P. et al., 2019: Global Woody Biomass Harvest Volumes and Forest Area Use Under Different SSP-RCP Scenarios. J. For. Econ. , 34(3–4) , 285–309, doi:10.1561/112.00000504.
Le Noë, J. et al., 2020: Modeling and empirical validation of long‐term carbon sequestration in forests (France, 1850–2015). Glob. Change Biol. , 26(4) , 2421–2434, doi:10.1111/gcb.15004.
Leahy, S., H. Clark, and A. Reisinger, 2020: Challenges and Prospects for Agricultural Greenhouse Gas Mitigation Pathways Consistent With the Paris Agreement. Front. Sustain. Food Syst. , 4, doi:10.3389/fsufs.2020.00069.
Leahy, S.C., L. Kearney, A. Reisinger, and H. Clark, 2019: Mitigating greenhouse gas emissions from New Zealand pasture-based livestock farm systems. J. New Zeal. Grasslands, 81101–110, doi:10.33584/jnzg.2019.81.417.
Leal Filho, W., U.M. Azeiteiro, A.L. Salvia, B. Fritzen, and R. Libonati, 2021: Fire in Paradise: Why the Pantanal is burning. Environ. Sci. Policy, 123, 31–34, doi:10.1016/j.envsci.2021.05.005.
Lechner, A.M., F.K.S. Chan, and A. Campos-Arceiz, 2018: Biodiversity conservation should be a core value of China’s Belt and Road Initiative. Nat. Ecol. Evol. , 2(3) , 408–409, doi:10.1038/s41559-017-0452-8.
Lee, J.W. and D.M. Day, 2013: Smokeless biomass pyrolysis for producing biofuels and biochar as a possible arsenal to control climate change. In: Advanced Biofuels and Bioproducts[Lee, J.W. (ed.)]. Springer, New York, USA, pp. 23–34.
Lefcheck, J.S. et al., 2018: Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl. Acad. Sci. , 115(14) , 3658–3662, doi:10.1073/pnas.1715798115.
Lehmann, J. and S. Joseph, 2012: Biochar for Environmental Management . [Lehmann, J. and S. Joseph (eds.)]. Routledge, Abingdon, Oxfordshire, UK, 976 pp.
Lehmann, J. and M. Rillig, 2014: Distinguishing variability from uncertainty. Nat. Clim. Change, 4 (3) , 153–153, doi:10.1038/nclimate2133.
Leifeld, J., 2016: Current approaches neglect possible agricultural cutback under large-scale organic farming. A comment to Ponisio et al. Proc. R. Soc. B Biol. Sci. , 283(1824) , 20151623, doi:10.1098/rspb.2015.1623.
Leifeld, J. and L. Menichetti, 2018: The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. , 9(1) , 1071, doi:10.1038/s41467-018-03406-6.
Leifeld, J. et al., 2013: Organic farming gives no climate change benefit through soil carbon sequestration. Proc. Natl. Acad. Sci. , 110(11) , E984–E984, doi:10.1073/pnas.1220724110.
Leifeld, J., C. Wüst-Galley, and S. Page, 2019: Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change, 9(12) , 945–947, doi:10.1038/s41558-019-0615-5.
Lejeune, Q., E.L. Davin, L. Gudmundsson, J. Winckler, and S.I. Seneviratne, 2018: Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Clim. Change, 8(5) , 386–390, doi:10.1038/s41558-018-0131-z.
Lemaire, G., A. Franzluebbers, P.C. de F. Carvalho, and B. Dedieu, 2014: Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. , 190, 4–8, doi:10.1016/j.agee.2013.08.009.
Lenton, T.M., 2010: The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manag. , 1(1) , 145–160, doi:10.4155/cmt.10.12.
Lenton, T.M., 2014: The global potential for carbon dioxide removal. In: Geoengineering of the Climate System[Harrison, R.M. and R.E. Hester (eds.)]. Royal Society of Chemistry, Cambridge, UK, pp. 52–79.
Leonardi, S., F. Magnani, A. Nolè, T. Van Noije, and M. Borghetti, 2015: A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition. Glob. Change Biol. , 21(1) , 287–298, doi:10.1111/gcb.12681.
Leskinen, P. et al., 2018: Substitution effects of wood-based products in climate change mitigation. European Forest Institute (EFI), Joensuu, Finland, 28 pp.
Leskinen, P. et al., 2020: Russian forests and climate change. European Forest Institute, Joensuu, Finland, 136 pp.
Levang, P., G. Lescuyer, D. Noumbissi, C. Déhu, and L. Broussolle, 2015: Does gathering really pay? Case studies from forest areas of the East and South regions of Cameroon. For. Trees Livelihoods, 24(2) , 128–143, doi:10.1080/14728028.2014.1000980.
Lewis, S.L., C.E. Wheeler, E.T.A. Mitchard, and A. Koch, 2019: Restoring natural forests is the best way to remove atmospheric carbon. Nature, 568(7750) , 25–28, doi:10.1038/d41586-019-01026-8.
Li, D. and E. Bou-Zeid, 2013: Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Climatol. , 52(9) , 2051–2064, doi:10.1175/JAMC-D-13-02.1.
Li, W. et al., 2020: Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale. Earth Syst. Sci. Data, 12(2) , 789–804, doi:10.5194/essd-12-789-2020.
Li, Y. et al., 2015: Local cooling and warming effects of forests based on satellite observations. Nat. Commun. , 6(1) , 6603, doi:10.1038/ncomms7603.
Lima, M., C.A. da Silva Junior, L. Rausch, H.K. Gibbs, and J.A. Johann, 2019: Demystifying sustainable soy in Brazil. Land use policy, 82, 349–352, doi:10.1016/j.landusepol.2018.12.016.
Lin, Z. et al., 2017: Overview of Ecological Restoration Technologies and Evaluation Systems. J. Resour. Ecol. , 8(4) , 315–324, doi:10.5814/j.issn.1674-764x.2017.04.002.
Lipper, L., C. Dutilly-Diane, and N. McCarthy, 2010: Supplying Carbon Sequestration From West African Rangelands: Opportunities and Barriers. Rangel. Ecol. Manag. , 63(1) , 155–166, doi:10.2111/REM-D-09-00009.1.
Lipsett-Moore, G.J., N.H. Wolff, and E.T. Game, 2018: Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. , 9(1) , 2247, doi:10.1038/s41467-018-04687-7.
Liu, Q. et al., 2018: How does biochar influence soil N cycle? A meta-analysis. Plant Soil, 426(1–2) , 211–225, doi:10.1007/s11104-018-3619-4.
Liu, Q. et al., 2019: Biochar application as a tool to decrease soil nitrogen losses NH3 volatilization, N2O emissions, and N leaching from croplands: Options and mitigation strength in a global perspective. Glob. Change Biol. , 25(6) , 2077–2093, doi:10.1111/gcb.14613.
Liu, T. et al., 2017: Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts. Appl. Energy, 205, 477–485, doi:10.1016/j.apenergy.2017.07.126.
Liu, Z. and Y. Liu, 2018: Mitigation of greenhouse gas emissions from animal production. Greenh. Gases Sci. Technol. , 8(4) , 627–638, doi:10.1002/ghg.1785.
Locatelli, B. et al., 2015: Tropical reforestation and climate change: beyond carbon. Restor. Ecol. , 23(4) , 337–343, doi:10.1111/rec.12209.
Löf, M., P. Madsen, M. Metslaid, J. Witzell, and D.F. Jacobs, 2019: Restoring forests: regeneration and ecosystem function for the future. New For. , 50(2) , 139–151, doi:10.1007/s11056-019-09713-0.
Loisel, J. et al., 2014: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24(9) , 1028–1042, doi:10.1177/0959683614538073.
Loomis, J., P. Kent, L. Strange, K. Fausch, and A. Covich, 2000: Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecol. Econ. , 33(1) , 103–117, doi:10.1016/S0921-8009(99)00131-7.
López-Paredes, J. et al., 2020: Mitigation of greenhouse gases in dairy cattle via genetic selection: 1. Genetic parameters of direct methane using noninvasive methods and proxies of methane. J. Dairy Sci. , 103(8) , 7199–7209, doi:10.3168/jds.2019-17597.
López‐Aizpún, M. et al., 2020: Meta‐analysis of global livestock urine‐derived nitrous oxide emissions from agricultural soils. Glob. Change Biol. , 26(4) , 2002–2013, doi:10.1111/gcb.15012.
Loudermilk, E.L., R.M. Scheller, P.J. Weisberg, and A. Kretchun, 2017: Bending the carbon curve: fire management for carbon resilience under climate change. Landsc. Ecol. , 32(7) , 1461–1472, doi:10.1007/s10980-016-0447-x.
Lovejoy, T.E. and C. Nobre, 2018: Amazon Tipping Point. Sci. Adv. , 4(2) , eaat2340, doi:10.1126/sciadv.aat2340.
Lovelock, C. and R. Reef, 2020: Variable Impacts of Climate Change on Blue Carbon. One Earth, 3(2) , 195–211, doi:10.1016/j.oneear.2020.07.010.
Lovelock, C.E., J.W. Fourqurean, and J.T. Morris, 2017: Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Front. Mar. Sci. , 4, doi:10.3389/fmars.2017.00143.
Lovelock, C.E., Daniel A. Friess, J.B.K.J.W.F., 2018: A Blue Carbon Primer. [Windham-Myers, L., S. Crooks, and T.G. Troxler (eds.)]. CRC Press, Boca Raton. 507 pp.
Luedeling, E. and H. Neufeldt, 2012: Carbon sequestration potential of parkland agroforestry in the Sahel. Clim. Change, 115(3–4) , 443–461, doi:10.1007/s10584-012-0438-0.
Luttrell, C., E. Sills, R. Aryani, A.D. Ekaputri, and M.F. Evinke, 2018: Beyond opportunity costs: who bears the implementation costs of reducing emissions from deforestation and degradation?Mitig. Adapt. Strateg. Glob. Change, 23(2) , 291–310, doi:10.1007/s11027-016-9736-6.
Luyssaert, S. et al., 2018: Trade-offs in using European forests to meet climate objectives. Nature, 562 (7726) , 259–262, doi:10.1038/s41586-018-0577-1.
Luderer, G., et al., 2021: Impact of declining renewable energy costs on electrification in low emisison scenarios. Nat. Energy 7:32-42, doi:10.1038/s41560-021-00937-z.
Lynch, D., J. Russell-Smith, A.C. Edwards, J. Evans, and C. Yates, 2018: Incentivising fire management in Pindan (Acacia shrubland): A proposed fuel type for Australia’s Savanna burning greenhouse gas emissions abatement methodology. Ecol. Manag. Restor. , 19(3) , 230–238, doi:10.1111/emr.12334.
Lynch, J. and R. Pierrehumbert, 2019: Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. , 3, doi:10.3389/fsufs.2019.00005.
Ma, S., D.D. Baldocchi, L. Xu, and T. Hehn, 2007: Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric. For. Meteorol. , 147(3–4) , 157–171, doi:10.1016/j.agrformet.2007.07.008.
Maaz, T.M. et al., 2021: Meta‐analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Change Biol. , 27(11) , 2343–2360, doi:10.1111/gcb.15588.
Macdiarmid, J.I., 2013: Is a healthy diet an environmentally sustainable diet?Proc. Nutr. Soc. , 72(1) , 13–20, doi:10.1017/S0029665112002893.
MacLeod, M. et al., 2018: Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa. Sustainability, 10(5) , 1633, doi:10.3390/su10051633.
Macreadie, P.I. et al., 2019: The future of Blue Carbon science. Nat. Commun. , 10(1) , 3998, doi:10.1038/s41467-019-11693-w.
Magkos, F. et al., 2020: A Perspective on the Transition to Plant-Based Diets: a Diet Change May Attenuate Climate Change, but Can It Also Attenuate Obesity and Chronic Disease Risk?Adv. Nutr. , 11(1) , 1–9, doi:10.1093/advances/nmz090.
Mahmood, R. et al., 2014: Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. , 34(4) , 929–953, doi:10.1002/joc.3736.
Mäkelä, M., 2017: Environmental impacts and aspects in the forest industry: What kind of picture do corporate environmental reports provide?For. Policy Econ. , 80, 178–191, doi:10.1016/j.forpol.2017.03.018.
Mancini, L.D., P. Corona, and L. Salvati, 2018: Ranking the importance of Wildfires’ human drivers through a multi-model regression approach. Environ. Impact Assess. Rev. , 72, 177–186, doi:10.1016/j.eiar.2018.06.003.
Maneepitak, S. et al., 2019: Effects of water and rice straw management practices on water savings and greenhouse gas emissions from a double-rice paddy field in the Central Plain of Thailand. Eur. J. Agron. , 107, 18–29, doi:10.1016/j.eja.2019.04.002.
Mantyka-Pringle, C.S. et al., 2017: Bridging science and traditional knowledge to assess cumulative impacts of stressors on ecosystem health. Environ. Int. , 102, 125–137, doi:10.1016/j.envint.2017.02.008.
Marlon, J.R. et al., 2012: Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. , 109(9) , E535–E543, doi:10.1073/pnas.1112839109.
Martínez-Mena, M. et al., 2019: Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment. Biogeosciences, 16(5) , 1035–1051, doi:10.5194/bg-16-1035-2019.
Martius, C. et al., 2016: How to achieve reliable, transparent and independent monitoring of greenhouse gas emissions from land activities for policy support . 2016 Berlin Conference on Global Transformative Climate Governance, 7 pp.
Mašek, O. et al., 2018: Consistency of biochar properties over time and production scales: A characterisation of standard materials. J. Anal. Appl. Pyrolysis, 132, 200–210, doi:10.1016/j.jaap.2018.02.020.
Mausel, D.L., A. Waupochick, and M. Pecore, 2017: Menominee Forestry: Past, Present, Future. J. For. , 115(5) , 366–369, doi:10.5849/jof.16-046.
Mayberry, D., H. Bartlett, J. Moss, T. Davison, and M. Herrero, 2019: Pathways to carbon-neutrality for the Australian red meat sector. Agric. Syst. , 175, 13–21, doi:10.1016/j.agsy.2019.05.009.
Mayer Pelicice, F., 2019: Weak Democracies, Failed Policies, and the Demise of Ecosystems in Poor and Developing Nations. Trop. Conserv. Sci. , 12, 194008291983990, doi:10.1177/1940082919839902.
Mbow, C., C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan, M.G. Rivera-Ferre, T. Sapkota, F.N. Tubiello, Y. Xu, 2019: Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 131–248.
Mbow, C. et al., 2020: Agroforestry as a solution for multiple climate change challenges in Africa. In: Climate Change and Agriculture[Deryng, D. (ed.)]. Burleigh Dodds Science Publishing Limited, Cambridge, UK.
McCarty, J.L., T.E.L. Smith, and M.R. Turetsky, 2020: Arctic fires re-emerging. Nat. Geosci. , 13(10) , 658–660, doi:10.1038/s41561-020-00645-5.
McDermott, J.J., S.J. Staal, H.A. Freeman, M. Herrero, and J.A. Van de Steeg, 2010: Sustaining intensification of smallholder livestock systems in the tropics. Livest. Sci. , 130(1–3) , 95–109, doi:10.1016/j.livsci.2010.02.014.
McGinn, S.M., T.K. Flesch, K.A. Beauchemin, A. Shreck, and M. Kindermann, 2019: Micrometeorological Methods for Measuring Methane Emission Reduction at Beef Cattle Feedlots: Evaluation of 3‐Nitrooxypropanol Feed Additive. J. Environ. Qual. , 48(5) , 1454–1461, doi:10.2134/jeq2018.11.0412.
McKenzie, L.J. et al., 2020: The global distribution of seagrass meadows. Environ. Res. Lett. , 15 (7) , 074041, doi:10.1088/1748-9326/ab7d06.
McLaren, D., 2012: A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. , 90(6) , 489–500, doi:10.1016/j.psep.2012.10.005.
McMullin, S. et al., 2019: Developing fruit tree portfolios that link agriculture more effectively with nutrition and health: a new approach for providing year-round micronutrients to smallholder farmers. Food Secur. , 11(6) , 1355–1372, doi:10.1007/s12571-019-00970-7.
Mcowen, C. et al., 2017: A global map of saltmarshes. Biodivers. Data J. , 5, e11764, doi:10.3897/BDJ.5.e11764.
Meemken, E.-M. and M. Qaim, 2018: Organic Agriculture, Food Security, and the Environment. Annu. Rev. Resour. Econ. , 10(1) , 39–63, doi:10.1146/annurev-resource-100517-023252.
Mei, K. et al., 2018: Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. , 182, 86–93, doi:10.1016/j.still.2018.05.006.
Meier, M.S. et al., 2015: Environmental impacts of organic and conventional agricultural products – Are the differences captured by life cycle assessment?J. Environ. Manage. , 149, 193–208, doi:10.1016/j.jenvman.2014.10.006.
Meier, R. et al., 2021: Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. , 14(7) , 473–478, doi:10.1038/s41561-021-00773-6.
Melgar, A. et al., 2020: Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. J. Dairy Sci. , 103(7) , 6145–6156, doi:10.3168/jds.2019-17840.
Mendelsohn, R. and B. Sohngen, 2019: The Net Carbon Emissions from Historic Land Use and Land Use Change. J. For. Econ. , 34 (3–4), 263–283, doi:10.1561/112.00000505.
Mertz, O. and C.F. Mertens, 2017: Land Sparing and Land Sharing Policies in Developing Countries – Drivers and Linkages to Scientific Debates. World Dev. , 98, 523–535, doi:10.1016/j.worlddev.2017.05.002.
Meybeck, A. and V. Gitz, 2017: Sustainable diets within sustainable food systems. Proc. Nutr. Soc. , 76(1) , 1–11, doi:10.1017/S0029665116000653.
Meyer, S., R.M. Bright, D. Fischer, H. Schulz, and B. Glaser, 2012: Albedo Impact on the Suitability of Biochar Systems To Mitigate Global Warming. Environ. Sci. Technol. , 46(22) , 12726–12734, doi:10.1021/es302302g.
Miao, R., D.A. Hennessy, and H. Feng, 2016: The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change. J. Agric. Resour. Econ. , 41(2) , 247–265, doi.org/10.22004/ag.econ.235189.
Millennium Ecosystem Assessment, 2005: Ecosystems and Human Well-being:Synthesis- a report on the e Millenium Ecosystem Assessment .Island Press, Washington, DC, USA. 155 pp.
Miller, D.C., J.C. Muñoz-Mora, L. V Rasmussen, and A. Zezza, 2020: Do Trees on Farms Improve Household Well-Being? Evidence From National Panel Data in Uganda. Front. For. Glob. Change, 3, doi:10.3389/ffgc.2020.00101.
Minasny, B. et al., 2019: Digital mapping of peatlands – A critical review. Earth-Science Rev. , 196, 102870, doi:10.1016/j.earscirev.2019.05.014.
Miner, R., 2010: Impact of the global forest industry on atmospheric greenhouse gases. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 86 pp.
Ministerio do Meio Ambiente (MMA), 2013: Plano De Acao Para Prevencao E Controle Do Desmatamento Na Amazonia Legal (PPCDAm) Pelo uso sustentável e conservacao da floresta 3aFase (2012-2015). https://www.researchgate.net/publication/273756502_Plano_de_Acao_para_prevencao_e_controle_do_desmatamento_na_Amazonia_Legal_PPCDAm_3_fase_2012-2015_pelo_uso_sustentavel_e_conservacao_da_Floresta (Accessed March 21, 2021).
Ministry of Environment Government of Brazil, 2018: The Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm). http://redd.mma.gov.br/en/legal-and-public-policy-framework/ppcdam (Accessed October 11, 2021).
Ministry of Foreign Affairs, 2019: Brazil’s third biennial update report to the United Nations framework convention on climate change. Brasilia, Brazil
Minx, J.C. et al., 2021: A comprehensive dataset for global, regional and national greenhouse gas emissions by sector 1970-2019 (Dataset). Zenodo, doi:10.5281/zenodo.5053056.
Mirzabaev, A., J. Wu, J. Evans, F. García-Oliva, I.A.G. Hussein, M.H. Iqbal, J. Kimutai, T. Knowles, F. Meza, D. Nedjraoui, F. Tena, M. Türkeş, R.J. Vázquez, M. Weltz, 2019: Desertification. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 249–343.
Mitchell, A.L., A. Rosenqvist, and B. Mora, 2017: Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. , 12(1) , 9, doi:10.1186/s13021-017-0078-9.
Moffette, F. and H.K. Gibbs, 2021: Agricultural Displacement and Deforestation Leakage in the Brazilian Legal Amazon. Land Econ. , 97(1) , 155–179, doi:10.3368/wple.97.1.040219-0045R.
Mohebalian, P.M. and F.X. Aguilar, 2016: Additionality and design of forest conservation programs: Insights from Ecuador’s Socio Bosque Program. For. Policy Econ. , 71, 103–114, doi:10.1016/j.forpol.2015.08.002.
Mondelaers, K., J. Aertsens, and G. Van Huylenbroeck, 2009: A meta‐analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. , 111(10) , 1098–1119, doi:10.1108/00070700910992925.
Moreira, F. et al., 2020a: Wildfire management in Mediterranean-type regions: paradigm change needed. Environ. Res. Lett. , 15(1) , 011001, doi:10.1088/1748-9326/ab541e.
Moreira, M.M.R. et al., 2020b: Socio-environmental and land-use impacts of double-cropped maize ethanol in Brazil. Nat. Sustain. , 3(3) , 209–216, doi:10.1038/s41893-019-0456-2.
Moser, S.C., S. Jeffress Williams, and D.F. Boesch, 2012: Wicked Challenges at Land’s End: Managing Coastal Vulnerability Under Climate Change. Annu. Rev. Environ. Resour. , 37(1) , 51–78, doi:10.1146/annurev-environ-021611-135158.
Mosnier, C. et al., 2019: Greenhouse gas abatement strategies and costs in French dairy production. J. Clean. Prod. , 236, 117589, doi:10.1016/j.jclepro.2019.07.064.
Mostafa, E., A. Selders, R.S. Gates, and W. Buescher, 2020: Pig barns ammonia and greenhouse gas emission mitigation by slurry aeration and acid scrubber. Environ. Sci. Pollut. Res. , 27(9) , 9444–9453, doi:10.1007/s11356-020-07613-x.
Mottet, A. et al., 2017a: Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. , 14, 1–8, doi:10.1016/j.gfs.2017.01.001.
Mottet, A. et al., 2017b: Climate change mitigation and productivity gains in livestock supply chains: insights from regional case studies. Reg. Environ. Change, 17(1) , 129–141, doi:10.1007/s10113-016-0986-3.
Mouratiadou, I. et al., 2020: Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges. GCB Bioenergy, 12(1) , 71–89, doi:10.1111/gcbb.12649.
Muchane, M.N. et al., 2020: Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric. Ecosyst. Environ. , 295, 106899, doi:10.1016/j.agee.2020.106899.
Mueller, N.D. et al., 2012: Closing yield gaps through nutrient and water management. Nature, 490(7419) , 254–257, doi:10.1038/nature11420.
Mueller, N.D. et al., 2016: Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change, 6 (3) , 317–322, doi:10.1038/nclimate2825.
Muller, A. et al., 2017: Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. , 8(1) , 1290, doi:10.1038/s41467-017-01410-w.
Munkholm, L.J. et al., 2020: Vidensyntese Om Conservation Agriculture. Aarhus Universitet, Tjele, Denmark, 134 pp.
Murdiyarso, D., E. Lilleskov, and R. Kolka, 2019: Tropical peatlands under siege: the need for evidence-based policies and strategies. Mitig. Adapt. Strateg. Glob. Change, 24(4) , 493–505, doi:10.1007/s11027-019-9844-1.
Muri, H., 2018: The role of large—scale BECCS in the pursuit of the 1.5°C target: an Earth system model perspective. Environ. Res. Lett. , 13(4) , 044010, doi:10.1088/1748-9326/aab324.
Murray, B.C., B.A. McCarl, and H.-C. Lee, 2004: Estimating Leakage from Forest Carbon Sequestration Programs. Land Econ. , 80(1) , 109–124, doi:10.2307/3147147.
Murray, B.C., B. Sohngen, and M.T. Ross, 2007: Economic consequences of consideration of permanence, leakage and additionality for soil carbon sequestration projects. Clim. Change, 80(1–2) , 127–143, doi:10.1007/s10584-006-9169-4.
Nabuurs, G.J., O. Masera, K. Andrasko, P. Benitez-Ponce, R. Boer, M. Dutschke, E. Elsiddig, J. Ford-Robertson, P. Frumhoff, T. Karjalainen, O. Krankina, W.A. Kurz, M. Matsumoto, W. Oyhantcabal, N.H. Ravindranath, M.J. Sanz Sanchez, X. Zhang, 2007: Forestry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Metz, B., O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 541–584.
Nabuurs, G.-J. et al., 2013: First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change, 3(9) , 792–796, doi:10.1038/nclimate1853.
Nabuurs, G.-J. et al., 2017: By 2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart Forestry. Forests, 8(12) , 484, doi:10.3390/f8120484.
Nabuurs, G.-J. et al., 2019: Next-generation information to support a sustainable course for European forests. Nat. Sustain. , 2(9) , 815–818, doi:10.1038/s41893-019-0374-3.
Næss, J.S., O. Cavalett, and F. Cherubini, 2021: The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. , 4(6) , 525–536, doi:10.1038/s41893-020-00680-5.
Nahuelhual, L. et al., 2007: Valuing Ecosystem Services of Chilean Temperate Rainforests. Environ. Dev. Sustain. , 9(4) , 481–499, doi:10.1007/s10668-006-9033-8.
Namatsheve, T., R. Cardinael, M. Corbeels, and R. Chikowo, 2020: Productivity and biological N2-fixation in cereal-cowpea intercropping systems in sub-Saharan Africa. A review. Agron. Sustain. Dev. , 40(4) , 30, doi:10.1007/s13593-020-00629-0.
Nasser, F., V.A. Maguire-Rajpaul, W.K. Dumenu, and G.Y. Wong, 2020: Climate-Smart Cocoa in Ghana: How Ecological Modernisation Discourse Risks Side-Lining Cocoa Smallholders. Front. Sustain. Food Syst. , 4, 1–17. Doi:10.3389/fsufs.2020.00073.
Naudts, K. et al., 2016: Europe’s forest management did not mitigate climate warming. Science, 351(6273) , 597–600, doi:10.1126/science.aad7270.
Ndambi, O.A., D.E. Pelster, J.O. Owino, F. de Buisonjé, and T. Vellinga, 2019: Manure Management Practices and Policies in Sub-Saharan Africa: Implications on Manure Quality as a Fertilizer. Front. Sustain. Food Syst. , 3, doi:10.3389/fsufs.2019.00029.
Ndung’u, P.W. et al., 2019: Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Anim. Prod. Sci. , 59(6) , 1136, doi:10.1071/AN17809.
Nemecek, T., D. Dubois, O. Huguenin-Elie, and G. Gaillard, 2011: Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agric. Syst. , 104(3) , 217–232, doi:10.1016/j.agsy.2010.10.002.
Neogi, S., 2020a: Short Communication Ecosystem Sustainability for Coastal Wetlands. COJRR, 2, 16–17, doi.org/10.31031/COJRR.2020.02.000546
Neogi, S., 2020b: Understanding soil carbon processes in the Indian Sundarbans to abate climate change. Int. J. Sci. Eng. Res. , 11(04) , 1193–1195, doi:10.14299/ijser.2020.04.03.
Nepstad, D. et al., 2014: Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science, 344(6188) , 1118–1123, doi:10.1126/science.1248525.
Nepstad, D.C., C.M. Stickler, B.S.- Filho, and F. Merry, 2008: Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. , 363(1498) , 1737–1746, doi:10.1098/rstb.2007.0036.
New York Declaration on Forests, 2021: Progress Report. Update on Goal 2. Prog. Report. Updat. Goal 2. , https://forestdeclaration.org/goals/goal-2 (Accessed May 14, 2021).
Niles, M.T. and S. Wiltshire, 2019: Tradeoffs in US dairy manure greenhouse gas emissions, productivity, climate, and manure management strategies. Environ. Res. Commun. , 1(7) , 075003, doi:10.1088/2515-7620/ab2dec.
Ninan, K. N. and M. Inoue, 2017: Building a Climate Resilient Economy and Society-Challenges and Opportunities. Edward Elgar Publishing, Cheltenham, UK and Northampton, USA, 336 pp.
Ninan, K.N. and M. Inoue, 2013: Valuing forest ecosystem services: What we know and what we don’t. Ecol. Econ. , 93, 137–149, doi:10.1016/j.ecolecon.2013.05.005.
Ninan, K.N. and A. Kontoleon, 2016: Valuing forest ecosystem services and disservices – Case study of a protected area in India. Ecosyst. Serv. , 20, 1–14, doi:10.1016/j.ecoser.2016.05.001.
Niwa, Y. et al., 2017: A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 2: Optimization scheme and identical twin experiment of atmospheric CO2 inversion. Geosci. Model Dev. , 10(6) , 2201–2219, doi:10.5194/gmd-10-2201-2017.
Novita, N. et al., 2021: Carbon Stocks from Peat Swamp Forest and Oil Palm Plantation in Central Kalimantan, Indonesia. In: Climate Change Research, Policy and Actions in Indonesia[Djalante, R., J. Jupesta, and E. Aldrian (eds.)]. Springer, Cham, Switzerland, pp. 203–227.
Nowicki, R., J. Thomson, D. Burkholder, J. Fourqurean, and M. Heithaus, 2017: Predicting seagrass recovery times and their implications following an extreme climate event. Mar. Ecol. Prog. Ser. , 567, 79–93, doi:10.3354/meps12029.
Nugent, K.A. et al., 2019: Prompt active restoration of peatlands substantially reduces climate impact. Environ. Res. Lett. , 14(12) , 124030, doi:10.1088/1748-9326/ab56e6.
Nunes, A.N., L. Lourenço, and A.C.C. Meira, 2016: Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total Environ. , 573, 1190–1202, doi:10.1016/j.scitotenv.2016.03.121.
NYDF Assessment Partners, 2019: Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report . Climate Focus, Amsterdam, The Netherlands, 96 pp.
O’Halloran, T.L. et al., 2012: Radiative forcing of natural forest disturbances. Glob. Change Biol. , 18(2) , 555–565, doi:10.1111/j.1365-2486.2011.02577.x.
Obersteiner, M. et al., 2016: Assessing the land resource–food price nexus of the Sustainable Development Goals. Sci. Adv. , 2(9) , e1501499, doi:10.1126/sciadv.1501499.
OECD, 2012: OECD environmental outlook to 2050: the consequences of inaction. Int. J. Sustain. High. Educ. , 13(3) , ijshe.2012.24913caa.010, doi:10.1108/ijshe.2012.24913caa.010.
OECD, 2021a: Effective Carbon Rates 2021. OECD Publishing, Paris, France.
OECD, 2021b: Making Better Policies for Food Systems. OECD Publishing, Paris, France, 280 pp.
OECD/FAO, 2019: OECD-FAO Agricultural Outlook 2019-2028, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.4060/CA4076EN.
Ogle, S.M. et al., 2019: Climate and Soil Characteristics Determine Where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Sci. Rep. , 9(1) , 11665, doi:10.1038/s41598-019-47861-7.
Ojanen, P. and K. Minkkinen, 2020: Rewetting Offers Rapid Climate Benefits for Tropical and Agricultural Peatlands But Not for Forestry‐Drained Peatlands. Global Biogeochem. Cycles, 34(7) , doi:10.1029/2019GB006503.
Olsson, L., H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, W. Kurz, D. Li, D.J. Sonwa, L. Stringer, 2019: Land Degradation. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 345–436.
Oliver, C.D., N.T. Nassar, B.R. Lippke, and J.B. McCarter, 2014: Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests. J. Sustain. For. , 33(3) , 248–275, doi:10.1080/10549811.2013.839386.
Omondi, M.O. et al., 2016: Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34, doi:10.1016/j.geoderma.2016.03.029.
Oo, A.Z. et al., 2018: Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. , 252, 148–158, doi:10.1016/j.agee.2017.10.014.
Oreska, M.P.J. et al., 2020: The greenhouse gas offset potential from seagrass restoration. Sci. Rep. , 10(1) , 7325, doi:10.1038/s41598-020-64094-1.
Ortega, L.A. and D. Martínez-Barón, 2018: Territorio Sostenible Adaptado al Clima – Cauca: Eje articulador del cambio climático con los instrumentos de gestión y política del departamento del Cauca. 23 (1) , 1–4.
Orth, R.J. et al., 2020: Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. , 6 eabc6434, doi:10.1126/sciadv.abc6434.
Ouden, J. Den et al., 2020: Kan uitstel van houtoogst bijdragen aan CO2-mitigatie?Wageningen University and Research, Wageningen, The Netherlands.
Ouyang, X. and S.Y. Lee, 2020: Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. , 11(1) , 317, doi:10.1038/s41467-019-14120-2.
Ouyang, Z. et al., 2016: Improvements in ecosystem services from investments in natural capital. Science, 352(6292) , 1455–1459, doi:10.1126/science.aaf2295.
Page, S.E. and A.J. Baird, 2016: Peatlands and Global Change: Response and Resilience. Annu. Rev. Environ. Resour. , 41(1) , 35–57, doi:10.1146/annurev-environ-110615-085520.
Page, S.E., J.O. Rieley, and C.J. Banks, 2011: Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. , 17(2) , 798–818, doi:10.1111/j.1365-2486.2010.02279.x.
Palahí, M. et al., 2021: Concerns about reported harvests in European forests. Nature, 592(7856) , E15–E17, doi:10.1038/s41586-021-03292-x.
Pandey, A. et al., 2014: Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric. Ecosyst. Environ. , 196, 137–146, doi:10.1016/j.agee.2014.06.010.
Pape, D. et al., 2016. Managing Agricultural Land for Greenhouse Gas Mitigation within the United States. Report prepared by ICF International under USDA Contract No. AG-3144-D-14-0292. July 2016.
Papworth, S. et al., 2017: The impact of gold mining and agricultural concessions on the tree cover and local communities in northern Myanmar. Sci. Rep. , 7(1) , 46594, doi:10.1038/srep46594.
Parfitt, J., M. Barthel, and S. Macnaughton, 2010: Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. , 365(1554) , 3065–3081, doi:10.1098/rstb.2010.0126.
Parodi, A. et al., 2018: The potential of future foods for sustainable and healthy diets. Nat. Sustain. , 1(12) , 782–789, doi:10.1038/s41893-018-0189-7.
Patra, A., T. Park, M. Kim, and Z. Yu, 2017: Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. , 8(1) , 13, doi:10.1186/s40104-017-0145-9.
Patra, A.K., 2016: Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants. Front. Vet. Sci. , 3, doi:10.3389/fvets.2016.00039.
Patra, P.K. et al., 2018: Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM). SOLA, 14, 91–96, doi:10.2151/sola.2018-016.
Pattanayak, S.K., D.E. Mercer, E. Sills, and J.C. Yang, 2003: Taking stock of agroforestry adoption studies. Agrofor. Syst. , 57, 173–186, doi.org/10.1023/A:1024809108210.
Paustian, K. et al., 2016: Climate-smart soils. Nature, 532 (7597) , 49–57, doi:10.1038/nature17174.
Paustian, K., E. Larson, J. Kent, E. Marx, and A. Swan, 2019: Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. , 1, doi:10.3389/fclim.2019.00008.
Pearson, T.R.H., S. Brown, and F.M. Casarim, 2014: Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. , 9(3) , 034017, doi:10.1088/1748-9326/9/3/034017.
Pearson, T.R.H., S. Brown, L. Murray, and G. Sidman, 2017: Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. , 12(1) , 3, doi:10.1186/s13021-017-0072-2.
Pellerin, S. et al., 2017: Identifying cost-competitive greenhouse gas mitigation potential of French agriculture. Environ. Sci. Policy, 77, 130–139, doi:10.1016/j.envsci.2017.08.003.
Pendleton, L. et al., 2012: Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One, 7(9) , e43542–e43542, doi:10.1371/journal.pone.0043542.
Pendrill, F., U.M. Persson, J. Godar, and T. Kastner, 2019a: Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. , 14(5) , 055003, doi:10.1088/1748-9326/ab0d41.
Pendrill, F. et al., 2019b: Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change, 56 (December 2018), 1–10, doi:10.1016/j.gloenvcha.2019.03.002.
Perugini, L. et al., 2017: Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. , 12(5) , 053002, doi:10.1088/1748-9326/aa6b3f.
Peters, M. et al., 2013: Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions. Trop. Grasslands - Forrajes Trop. , 1(2) , 156, doi:10.17138/TGFT(1)156-167.
Petersen, B. and S. Snapp, 2015: What is sustainable intensification? Views from experts. Land use policy, 46, 1–10, doi:10.1016/j.landusepol.2015.02.002.
Peterson, C.A., L. Deiss, and A.C.M. Gaudin, 2020: Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: A meta-analysis. PLoS One, 15(5) , e0231840, doi:10.1371/journal.pone.0231840.
Pfaff, A. and J. Robalino, 2017: Spillovers from Conservation Programs. Annu. Rev. Resour. Econ. , 9(1) , 299–315, doi:10.1146/annurev-resource-100516-053543.
Pfaff, A. et al., 2007: Road Investments, Spatial Spillovers, and Deforestation in the Brazilian Amazon. J. Reg. Sci. , 47(1) , 109–123, doi:10.1111/j.1467-9787.2007.00502.x.
Phalan, B., 2018: What Have We Learned from the Land Sparing-sharing Model?Sustainability, 10(6) , 1760, doi:10.3390/su10061760.
Phelps, J., E.L. Webb, and A. Agrawal, 2010: Does REDD+ Threaten to Recentralize Forest Governance?Science, 328(5976) , 312–313, doi:10.1126/science.1187774.
Pickering, N.K. et al., 2015: Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Animal, 9(9) , 1431–1440, doi:10.1017/S1751731115000968.
Pielke, R.A. et al., 2011: Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim. Change, 2(6) , 828–850, doi:10.1002/wcc.144.
Pilli, R., G. Fiorese, and G. Grassi, 2015: EU mitigation potential of harvested wood products. Carbon Balance Manag. , 10(1) , 6, doi:10.1186/s13021-015-0016-7.
Piva, J.T. et al., 2014: Soil gaseous N2O and CH4 emissions and carbon pool due to integrated crop-livestock in a subtropical Ferralsol. Agric. Ecosyst. Environ. , 190, 87–93, doi:10.1016/j.agee.2013.09.008.
Podolyan, A., H.J. Di, and K.C. Cameron, 2020: Effect of plantain on nitrous oxide emissions and soil nitrification rate in pasture soil under a simulated urine patch in Canterbury, New Zealand. J. Soils Sediments, 20(3) , 1468–1479, doi:10.1007/s11368-019-02505-1.
Poeplau, C. et al., 2011: Temporal dynamics of soil organic carbon after land-use change in the temperate zone - carbon response functions as a model approach. Glob. Change Biol. , 17(7) , 2415–2427, doi:10.1111/j.1365-2486.2011.02408.x.
Pongratz, J., C.H. Reick, R.A. Houghton, and J.I. House, 2014: Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. Earth Syst. Dyn. , 5(1) , 177–195, doi:10.5194/esd-5-177-2014.
Pongratz, J. et al., 2018: Models meet data: Challenges and opportunities in implementing land management in Earth system models. Glob. Change Biol. , 24(4) , 1470–1487, doi:10.1111/gcb.13988.
Poore, J. and T. Nemecek, 2018: Reducing food’s environmental impacts through producers and consumers. Science, 360(6392) , 987–992, doi:10.1126/science.aaq0216.
Popp, A. et al., 2014: Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change, 123(3–4) , 495–509, doi:10.1007/s10584-013-0926-x.
Popp, A. et al., 2017: Land-use futures in the shared socio-economic pathways. Glob. Environ. Change, 42, 331–345, doi:10.1016/j.gloenvcha.2016.10.002.
Post, M.J. et al., 2020: Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food, 1(7) , 403–415, doi:10.1038/s43016-020-0112-z.
Potapov, P. et al., 2017: The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. , 3(1) , doi:10.1126/sciadv.1600821.
Powell, T.W.R. and T.M. Lenton, 2012: Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. , 5(8) , 8116, doi:10.1039/c2ee21592f.
Powlson, D.S. et al., 2014: Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change, 4(8) , 678–683, doi:10.1038/nclimate2292.
Powlson, D.S., C.M. Stirling, C. Thierfelder, R.P. White, and M.L. Jat, 2016: Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems?Agric. Ecosyst. Environ. , 220, 164–174, doi:10.1016/j.agee.2016.01.005.
Pradhan, B.B., R.M. Shrestha, N.T. Hoa, and Y. Matsuoka, 2017: Carbon prices and greenhouse gases abatement from agriculture, forestry and land use in Nepal. Glob. Environ. Change, 43, 26–36, doi:10.1016/j.gloenvcha.2017.01.005.
Pradhan, B.B., A. Chaichaloempreecha, and B. Limmeechokchai, 2019: GHG mitigation in Agriculture, Forestry and Other Land Use (AFOLU) sector in Thailand. Carbon Balance Manag. , 14(1) , 3, doi:10.1186/s13021-019-0119-7.
Pratt, K. and D. Moran, 2010: Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass and Bioenergy, 34(8) , 1149–1158, doi:10.1016/j.biombioe.2010.03.004.
Pretty, J., 2018: Intensification for redesigned and sustainable agricultural systems. Science, 362(6417) , doi:10.1126/science.aav0294.
Pretty, J. et al., 2018: Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. , 1(8) , 441–446, doi:10.1038/s41893-018-0114-0.
Prosperi, P. et al., 2020: New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas. Clim. Change, 161(3) , 415–432, doi:10.1007/s10584-020-02654-0.
Prudhomme, R. et al., 2020: Combining mitigation strategies to increase co-benefits for biodiversity and food security. Environ. Res. Lett. , 15(11) , 114005, doi:10.1088/1748-9326/abb10a.
Puettmann, M., K. Sahoo, K. Wilson, and E. Oneil, 2020: Life cycle assessment of biochar produced from forest residues using portable systems. J. Clean. Prod. , 250, 119564, doi:10.1016/j.jclepro.2019.119564.
Pugh, T.A.M. et al., 2015: Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environ. Res. Lett. , 10(12) , 124008, doi:10.1088/1748-9326/10/12/124008.
Pugh, T.A.M. et al., 2019: Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. , 116(10) , 4382–4387, doi:10.1073/pnas.1810512116.
Qin, Z. et al., 2021: Delayed impact of natural climate solutions. Glob. Change Biol. , 27(2) , 215–217, doi:10.1111/gcb.15413.
Quynh, V.D. and O. Sander, 2015: Applying and scaling up Alternate Wetting and Drying for paddy rice in Vietnam. International Rice Research Institute and the CGIAR Program on Climate Change, Agriculture and Food Security,.
Rahman, S.A. et al., 2019: Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes. Food Energy Secur. , 8(3) , e00165, doi:10.1002/fes3.165.
Ramachandran Nair, P.K., V.D. Nair, B. Mohan Kumar, and J.M. Showalter, 2010: Carbon Sequestration in Agroforestry Systems. In: Advances in Agronomy[Sparks, D.L. (ed.)]. Academic Press, Elsevier, London, UK, pp. 237–307. https://doi.org/10.1016/S0065-2113(10)08005-3 .
Ranjan, R., 2019: Assessing the impact of mining on deforestation in India. Resour. Policy, 60, 23–35, doi:10.1016/j.resourpol.2018.11.022.
Ravikumar, A., A.M. Larson, A.E. Duchelle, R. Myers, and J. Gonzales Tovar, 2015: Multilevel governance challenges in transitioning towards a national approach for REDD+: evidence from 23 subnational REDD+ initiatives. Int. J. Commons, 9(2) , 909, doi:10.18352/ijc.593.
Ravindranath, N.H., R.K. Chaturvedi, and P. Kumar, 2017: Paris Agreement; Research, Monitoring and Reporting Requirements for India. Curr. Sci. , 112(05) , 916, doi:10.18520/cs/v112/i05/916-922.
Reddy, V.R., T. Chiranjeevi, and G. Syme, 2020: Inclusive sustainable intensification of agriculture in West Bengal, India: policy and institutional approaches. Int. J. Agric. Sustain. , 18 (1) , 70–83, doi:10.1080/14735903.2019.1698489.
Reiche, J. et al., 2021: Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett. , 16(2) , 024005, doi:10.1088/1748-9326/abd0a8.
Reisinger, A. et al., 2021: How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. , 379(2210) , 20200452, doi:10.1098/rsta.2020.0452.
Remy, C.C. et al., 2017: Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America. Environ. Res. Lett. , 12(3) , 035005, doi:10.1088/1748-9326/aa5aff.
Resosudarmo, I.A.P. et al., 2019: Indonesia’s land reform: Implications for local livelihoods and climate change. For. Policy Econ. , 108, 101903, doi:10.1016/j.forpol.2019.04.007.
RethinkX, 2019: Rethinking Food and Agriculture. RethinkX, 76 pp. https://www.rethinkx.com/food-and-agriculture (Accessed June 12, 2021).
Reyers, B. and E.R. Selig, 2020: Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. , 4(8) , 1011–1019, doi:10.1038/s41559-020-1230-6.
Riahi, K. et al., 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Change, 42, 153–168, doi:10.1016/j.gloenvcha.2016.05.009.
Ricart, A.M. et al., 2020: High variability of Blue Carbon storage in seagrass meadows at the estuary scale. Sci. Rep. , 10(1) , 5865, doi:10.1038/s41598-020-62639-y.
Rice, J., et al., 2018: Summary for Policy Makers of the Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services (IPBES), Bonn, Germany, 341–356 pp.
Richards, D.R. and D.A. Friess, 2016: Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proc. Natl. Acad. Sci., 13(2) , 344–349, doi:10.1073/pnas.1510272113.
Richards, P. and L. VanWey, 2015: Where Deforestation Leads to Urbanization: How Resource Extraction Is Leading to Urban Growth in the Brazilian Amazon. Ann. Assoc. Am. Geogr. , 105(4) , 806–823, doi:10.1080/00045608.2015.1052337.
Ricketts, T.H. et al., 2010: Indigenous Lands, Protected Areas, and Slowing Climate Change. PLoS Biol. , 8(3) , e1000331, doi:10.1371/journal.pbio.1000331.
Riggs, R. et al., 2018: Governance Challenges in an Eastern Indonesian Forest Landscape. Sustainability, 10(1) , 169, doi:10.3390/su10010169.
Rights and Resources Initiative, 2018: At a Crossroads. Consequiental trends in recognition of community-based forest tenure from 2002-2017. Rights and Resources Initiative, Washington, DC, USA, 60 pp.
Rigueiro-Rodróguez, A., J. McAdam, and M.R. Mosquera-Losada, 2009: Agroforestry in Europe: Current Status and Future Prospects. Springer, Dordrecht, The Netherlands. 450p.
Rivera-Monroy, V.H., E. Kristensen, S.Y. Lee, and R.R. Twilley, 2017: Mangrove Ecosystems: A Global Biogeographic Perspective. Springer International Publishing, Cham, Switzerland. 415p.
Robalino, J. and A. Pfaff, 2013: Ecopayments and Deforestation in Costa Rica: A Nationwide Analysis of PSA’s Initial Years. Land Econ. , 89(3) , 432–448, doi:10.3368/le.89.3.432.
Robalino, J., C. Sandoval, D.N. Barton, A. Chacon, and A. Pfaff, 2015: Evaluating Interactions of Forest Conservation Policies on Avoided Deforestation. PLoS One, 10(4) , e0124910, doi:10.1371/journal.pone.0124910.
Roberts, K.G., B.A. Gloy, S. Joseph, N.R. Scott, and J. Lehmann, 2010: Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. , 44(2) , 827–833, doi:10.1021/es902266r.
Robledo-Abad, C., et al., 2017: Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy, 9, 541–556, doi:10.1111/gcbb.12338.
Rochedo, P.R.R. et al., 2018: The threat of political bargaining to climate mitigation in Brazil. Nat. Clim. Change, 8(8) , 695–698, doi:10.1038/s41558-018-0213-y.
Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann, 2003: CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. , 3(6) , 1919–1964, doi:10.5194/acp-3-1919-2003.
Rödenbeck, C., S. Zaehle, R. Keeling, and M. Heimann, 2018: How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences, 15(8) , 2481–2498, doi:10.5194/bg-15-2481-2018.
Rodríguez Vásquez, M.J., A. Benoist, J. ‐M. Roda, and M. Fortin, 2021: Estimating Greenhouse Gas Emissions From Peat Combustion in Wildfires on Indonesian Peatlands, and Their Uncertainty. Global Biogeochem. Cycles, 35(2) , doi:10.1029/2019GB006218.
Roe, S. et al., 2019: Contribution of the land sector to a 1.5°C world. Nat. Clim. Change, 9(11) , 817–828, doi:10.1038/s41558-019-0591-9.
Roe, S. et al., 2021: Land‐based measures to mitigate climate change: Potential and feasibility by country. Glob. Change Biol. , 27 (23) , 6025–6058, doi:10.1111/gcb.15873.
Rogelj, J. et al., 2011: Emission pathways consistent with a 2°C global temperature limit. Nat. Clim. Change, 1(8) , 413–418, doi:10.1038/nclimate1258.
Rogelj, J. et al., 2017: Understanding the origin of Paris Agreement emission uncertainties. Nat. Commun. , 8(1) , 15748, doi:10.1038/ncomms15748.
Rogelj, J. et al., 2018a: Scenarios towards limiting global mean temperature increase below 1.5°C. Nat. Clim. Change, 8(4) , 325–332, doi:10.1038/s41558-018-0091-3.
Rogelj, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M.V. Vilariño, 2018b: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 93–174.
Rogissart, L., C. Foucherot, and V. Bellassen, 2019: Food policies and climate: a literature review. I4CE, Institute for Climate Economics, Paris. https://www.i4ce.org/wp-core/wp-content/uploads/2019/03/0306-I4CE2984-PolitiquesAlimentairesEtClimat-Etude24p-VA_V2.pdf (Accessed March 3, 2021).
Rokityanskiy, D. et al., 2007: Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technol. Forecast. Soc. Change, 74(7) , 1057–1082, doi:10.1016/j.techfore.2006.05.022.
Rolls, W. and P.M. Forster, 2020: Quantifying forest growth uncertainty on carbon payback times in a simple biomass carbon model. Environ. Res. Commun. , 2(4) , 045001, doi:10.1088/2515-7620/ab7ff3.
Romanovskaya, A.A. et al., 2020: Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation. Mitig. Adapt. Strateg. Glob. Change, 25(4) , 661–687, doi:10.1007/s11027-019-09885-2.
Roopsind, A., B. Sohngen, and J. Brandt, 2019: Evidence that a national REDD+ program reduces tree cover loss and carbon emissions in a high forest cover, low deforestation country. Proc. Natl. Acad. Sci. , 116(49) , 24492–24499, doi:10.1073/pnas.1904027116.
Roque, B.M., J.K. Salwen, R. Kinley, and E. Kebreab, 2019: Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. , 234, 132–138, doi:10.1016/j.jclepro.2019.06.193.
Rosa, I.M.D. et al., 2017: Multiscale scenarios for nature futures. Nat. Ecol. Evol. , 1(10) , 1416–1419, doi:10.1038/s41559-017-0273-9.
Rosa, L., J.A. Reimer, M.S. Went, and P. D’Odorico, 2020: Hydrological limits to carbon capture and storage. Nat. Sustain. , 3(8) , 658–666, doi:10.1038/s41893-020-0532-7.
Rose, S.K. et al., 2020: An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change. Clim. Change, 163(3) , 1539–1551, doi:10.1007/s10584-020-02945-6.
Rosenstock, T. et al., 2014: Agroforestry with N2-fixing trees: sustainable development’s friend or foe?Curr. Opin. Environ. Sustain. , 6, 15–21, doi:10.1016/j.cosust.2013.09.001.
Rosenstock, T.S. et al., 2019: A Planetary Health Perspective on Agroforestry in Sub-Saharan Africa. One Earth, 1(3) , 330–344, doi:10.1016/j.oneear.2019.10.017.
Rosenzweig, C. et al., 2020: Climate change responses benefit from a global food system approach. Nat. Food, 1(2) , 94–97, doi:10.1038/s43016-020-0031-z.
Rudel, T.K., R. Defries, G.P. Asner, and W.F. Laurance, 2009: Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. , 23:1396-1405 , doi:10.1111/j.1523-1739.2009.01332.x.
Ruffault, J. et al., 2020: Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. , 10(1) , 13790, doi:10.1038/s41598-020-70069-z.
Rulli, M.C., D. Bellomi, A. Cazzoli, G. De Carolis, and P. D’Odorico, 2016: The water-land-food nexus of first-generation biofuels. Sci. Rep. , 6(1) , 22521, doi:10.1038/srep22521.
Ruseva, T. et al., 2017: Additionality and permanence standards in California’s Forest Offset Protocol: A review of project and program level implications. J. Environ. Manage. , 198, 277–288, doi:10.1016/j.jenvman.2017.04.082.
Russell-Smith, J. et al., 2017: Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fire-prone settings?Clim. Change, 140(1) , 47–61, doi:10.1007/s10584-013-0910-5.
Rust, N.A. et al., 2020: How to transition to reduced-meat diets that benefit people and the planet. Sci. Total Environ. , 718, 137208, doi:10.1016/j.scitotenv.2020.137208.
Ryals, R., M.D. Hartman, W.J. Parton, M.S. DeLonge, and W.L. Silver, 2015: Long-term climate change mitigation potential with organic matter management on grasslands. Ecol. Appl. , 25(2) , 531–545, doi:10.1890/13-2126.1.
Saderne, V. et al., 2019: Role of carbonate burial in Blue Carbon budgets. Nat. Commun. , 10(1) , 1106, doi:10.1038/s41467-019-08842-6.
Saj, S., E. Torquebiau, E. Hainzelin, J. Pages, and F. Maraux, 2017: The way forward: An agroecological perspective for Climate-Smart Agriculture. Agric. Ecosyst. Environ. , 250, 20–24, doi:10.1016/j.agee.2017.09.003.
Salmon, G.R. et al., 2018: The greenhouse gas abatement potential of productivity improving measures applied to cattle systems in a developing region. Animal, 12 (4) , 844–852, doi:10.1017/S1751731117002294.
Salzman, J., G. Bennett, N. Carroll, A. Goldstein, and M. Jenkins, 2018: The global status and trends of Payments for Ecosystem Services. Nat. Sustain. , 1(3) , 136–144, doi:10.1038/s41893-018-0033-0.
Sanchez-Monedero, M.A. et al., 2018: Role of biochar as an additive in organic waste composting. Bioresour. Technol. , 247, 1155–1164, doi:10.1016/j.biortech.2017.09.193.
Sander, B.O., M. Samson, and R.J. Buresh, 2014: Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma, 235-236: 355-362, doi:10.1016/j.geoderma.2014.07.020.
Sanderman, J., T. Hengl, and G.J. Fiske, 2017: Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. , 114(36) , 9575–9580, doi:10.1073/pnas.1706103114.
Santos, P.Z.F., R. Crouzeilles, and J.B.B. Sansevero, 2019: Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manage. , 433, 140–145, doi:10.1016/j.foreco.2018.10.064.
Sapkota, T.B. et al., 2014: Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. F. Crop. Res. , 155, 233–244, doi:10.1016/j.fcr.2013.09.001.
Sapkota, T.B. et al., 2019: Cost-effective opportunities for climate change mitigation in Indian agriculture. Sci. Total Environ. , 655, 1342–1354, doi:10.1016/j.scitotenv.2018.11.225.
Sapkota, T.B. et al., 2021: Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Sci. Rep. , 11(1) , 1564, doi:10.1038/s41598-020-79883-x.
Sasmito, S.D. et al., 2019: Effect of land‐use and land‐cover change on mangrove blue carbon: A systematic review. Glob. Change Biol. , 25(12) , 4291–4302, doi:10.1111/gcb.14774.
Sathre, R. and J. O’Connor, 2010: Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy, 13(2) , 104–114, doi:10.1016/j.envsci.2009.12.005.
Satija, A. and F.B. Hu, 2018: Plant-based diets and cardiovascular health. Trends Cardiovasc. Med. , 28(7) , 437–441, doi:10.1016/j.tcm.2018.02.004.
SCBD, 2009: Connecting Biodiversity and Climate Change Mitigation and Adaptation. Secretariat of the Convention on Biological Diversity, Montreal, Canada, 127 pp.
SCBD, 2020: Global Biodiversity Outlook 5. Secretariat of the Convention on Biological Diversity, Montreal, Canada, 212 pp.
Schabel, H.G. and M. Pecore, 1997: Silviculture on Wisconsin’s Menominee Indian Reservation—Is it Dauerwald?Proceedings, XI World Forestry Congress, Antalya, Turkey. Vol. D. 97–101.
Scherhaufer, S., G. Moates, H. Hartikainen, K. Waldron, and G. Obersteiner, 2018: Environmental impacts of food waste in Europe. Waste Manag. , 77, 98–113, doi:10.1016/j.wasman.2018.04.038.
Scheutz, C. and A.M. Fredenslund, 2019: Total methane emission rates and losses from 23 biogas plants. Waste Manag. , 97, 38–46, doi:10.1016/j.wasman.2019.07.029.
Schimel, D., B.B. Stephens, and J.B. Fisher, 2015: Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. , 112(2) , 436–441, doi:10.1073/pnas.1407302112.
Schmidt, S.M., M. Belisle, and W.B. Frommer, 2020: The evolving landscape around genome editing in agriculture. EMBO Rep. , 21(6) , doi:10.15252/embr.202050680.
Schulze, K., Ž. Malek, and P.H. Verburg, 2020: The Impact of Accounting for Future Wood Production in Global Vertebrate Biodiversity Assessments. Environ. Manage. , 66(3) , 460–475, doi:10.1007/s00267-020-01322-4.
Schurgers, G., A. Ahlström, A. Arneth, T.A.M. Pugh, and B. Smith, 2018: Climate Sensitivity Controls Uncertainty in Future Terrestrial Carbon Sink. Geophys. Res. Lett. , 45(9) , 4329–4336, doi:10.1029/2018GL077528.
Schuur, E.A.G. et al., 2015: Climate change and the permafrost carbon feedback. Nature, 520(7546) , 171–179, doi:10.1038/nature14338.
Schwaab, J. et al., 2020: Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep. , 10(1) , 14153, doi:10.1038/s41598-020-71055-1.
Scialabba, N.E.-H. and M. Müller-Lindenlauf, 2010: Organic agriculture and climate change. Renew. Agric. Food Syst. , 25(2) , 158–169, doi:10.1017/S1742170510000116.
Scott, A.C., D.M.J.S. Bowman, W.J. Bond, S.J. Pyne, and M.E., 2014: Fire on Earth: An Introduction. Wiley-Blackwell, 88–91 pp.
Searchinger, T.D. et al., 2009: Fixing a Critical Climate Accounting Error. Science, 326(5952) , 527–528, doi:10.1126/science.1178797.
Searchinger, T.D., T. Beringer, and A. Strong, 2017: Does the world have low-carbon bioenergy potential from the dedicated use of land?Energy Policy, 110, 434–446, doi:10.1016/j.enpol.2017.08.016.
Seddon, N. et al., 2020: Nature-based solutions in nationally determined contributions. IUCN, University of Oxford, Gland and Oxford, UK, 62 pp.
Sefeedpari, P. et al., 2019: Technical, environmental and cost-benefit assessment of manure management chain: A case study of large scale dairy farming. J. Clean. Prod. , 233, 857–868, doi:10.1016/j.jclepro.2019.06.146.
Seidl, R. et al., 2017: Forest disturbances under climate change. Nat. Clim. Change, 7(6) , 395–402, doi:10.1038/nclimate3303.
Sendzimir, J., C.P. Reij, and P. Magnuszewski, 2011: Rebuilding Resilience in the Sahel: Regreening in the Maradi and Zinder Regions of Niger. Ecol. Soc. , 16(3) , art1, doi:10.5751/ES-04198-160301.
Senf, C. and R. Seidl, 2021: Mapping the forest disturbance regimes of Europe. Nat. Sustain. , 4(1) , 63–70, doi:10.1038/s41893-020-00609-y.
Seppälä, J. et al., 2019: Effect of increased wood harvesting and utilization on required greenhouse gas displacement factors of wood-based products and fuels. J. Environ. Manage. , 247, 580–587, doi:10.1016/j.jenvman.2019.06.031.
Setyanto, P. et al., 2018: Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. , 64 (1) , 23–30, doi:10.1080/00380768.2017.1409600.
Seufert, V. and N. Ramankutty, 2017: Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. , 3(3) , doi:10.1126/sciadv.1602638.
Seufert, V., N. Ramankutty, and J.A. Foley, 2012: Comparing the yields of organic and conventional agriculture. Nature, 485(7397) , 229–232, doi:10.1038/nature11069.
Shin, S.-R. et al., 2019: Effects of pig slurry acidification on methane emissions during storage and subsequent biogas production. Water Res. , 152, 234–240, doi:10.1016/j.watres.2019.01.005.
Short, F.T., S. Kosten, P.A. Morgan, S. Malone, and G.E. Moore, 2016: Impacts of climate change on submerged and emergent wetland plants. Aquat. Bot. , 135, 3–17, doi:10.1016/j.aquabot.2016.06.006.
Sibayan, E.B. et al., 2018: Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon, Philippines. Soil Sci. Plant Nutr. , 64(1) , 39–46, doi:10.1080/00380768.2017.1401906.
Sida, T.S., F. Baudron, H. Kim, and K.E. Giller, 2018: Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agric. For. Meteorol. , 248, 339–347, doi:10.1016/j.agrformet.2017.10.013.
Sidik, F., M. Fernanda Adame, and C.E. Lovelock, 2019: Carbon sequestration and fluxes of restored mangroves in abandoned aquaculture ponds. J. Indian Ocean Reg. , 15(2) , 177–192, doi:10.1080/19480881.2019.1605659.
Sills, E.O. et al., 2015: Estimating the Impacts of Local Policy Innovation: The Synthetic Control Method Applied to Tropical Deforestation. PLoS One, 10(7) , e0132590, doi:10.1371/journal.pone.0132590.
Silva, J.V. et al., 2021: How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe. Glob. Food Sec. , 30, 100552, doi:10.1016/j.gfs.2021.100552.
Silva Junior, C.H.L. et al., 2021: The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. , 5(2) , 144–145, doi:10.1038/s41559-020-01368-x.
Silvani, L. et al., 2019: Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils?Sci. Total Environ. , 694, 133693, doi:10.1016/j.scitotenv.2019.133693.
Simmonds, M.B. et al., 2021: Impacts of California’s climate-relevant land use policy scenarios on terrestrial carbon emissions (CO2 and CH4) and wildfire risk. Environ. Res. Lett. , 16(1) , 014044, doi:10.1088/1748-9326/abcc8d.
Simon, P.L., C.A.M. de Klein, W. Worth, A.J. Rutherford, and J. Dieckow, 2019: The efficacy of Plantago lanceolata for mitigating nitrous oxide emissions from cattle urine patches. Sci. Total Environ. , 691, 430–441, doi:10.1016/j.scitotenv.2019.07.141.
Simon, P.L. et al., 2020: Does Brachiaria humidicola and dicyandiamide reduce nitrous oxide and ammonia emissions from cattle urine patches in the subtropics?Sci. Total Environ. , 720, 137692, doi:10.1016/j.scitotenv.2020.137692.
Simonet, G., J. Subervie, D. Ezzine‐de‐Blas, M. Cromberg, and A.E. Duchelle, 2019: Effectiveness of a REDD+ Project in Reducing Deforestation in the Brazilian Amazon. Am. J. Agric. Econ. , 101(1) , 211–229, doi:10.1093/ajae/aay028.
Sinare, H. and L.J. Gordon, 2015: Ecosystem services from woody vegetation on agricultural lands in Sudano-Sahelian West Africa. Agric. Ecosyst. Environ. , 200, 186–199, doi:10.1016/j.agee.2014.11.009.
Sinclair, F. and R. Coe, 2019: The Options by Context Approach: A Paradigm Shift in Agronomy. Exp. Agric. , 55(S1) , 1–13, doi:10.1017/S0014479719000139.
Singh, B.P., A.L. Cowie, and R.J. Smernik, 2012: Biochar Carbon Stability in a Clayey Soil As a Function of Feedstock and Pyrolysis Temperature. Environ. Sci. Technol. , 46(21) , 11770–11778, doi:10.1021/es302545b.
Singh, B.P. et al., 2015: In Situ Persistence and Migration of Biochar Carbon and Its Impact on Native Carbon Emission in Contrasting Soils under Managed Temperate Pastures. PLoS One, 10(10) , e0141560, doi:10.1371/journal.pone.0141560.
Six, J. et al., 2004: The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Change Biol. , 10(2) , 155–160, doi:10.1111/j.1529-8817.2003.00730.x.
Skinner, C. et al., 2014: Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis. Sci. Total Environ. , 468–469, 553–563, doi:10.1016/j.scitotenv.2013.08.098.
Sloan, S. et al., 2018: Infrastructure development and contested forest governance threaten the Leuser Ecosystem, Indonesia. Land use policy, 77, 298–309, doi:10.1016/j.landusepol.2018.05.043.
Smith, L.G., G.J.D. Kirk, P.J. Jones, and A.G. Williams, 2019: The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. , 10(1) , 4641, doi:10.1038/s41467-019-12622-7.
Smith, P., 2014: Do grasslands act as a perpetual sink for carbon?Glob. Change Biol. , 20(9) , 2708–2711, doi:10.1111/gcb.12561.
Smith, P., 2016: Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. , 22(3) , 1315–1324, doi:10.1111/gcb.13178.
Smith, P., D. Powlson, M. Glendining, and J. Smith, 1997: Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob. Change Biol. , 3(1) , 67–79, doi:10.1046/j.1365-2486.1997.00055.x.
Smith, P. et al., 2008: Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. , 363(1492) , 789–813, doi:10.1098/rstb.2007.2184.
Smith P., M. Bustamante, H. Ahammad, H. Clark, H. Dong, E.A. Elsiddig, H. Haberl, R. Harper, J. House, M. Jafari, O. Masera, C. Mbow, N.H. Ravindranath, C.W. Rice, C. Robledo Abad, A. Romanovskaya, F. Sperling, and F. Tubiello, 2014: Agriculture, Forestry and Other Land Use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 811–922.
Smith, P. et al., 2016: Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change, 6(1) , 42–50, doi:10.1038/nclimate2870.
Smith, P., J. Nkem, K. Calvin, D. Campbell, F. Cherubini, G. Grassi, V. Korotkov, A.L. Hoang, S. Lwasa, P. McElwee, E. Nkonya, N. Saigusa, J.-F. Soussana, and M.A. Taboada, 2019a: Interlinkages Between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-offs and Integrated Response Options. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[Shukla, P.R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Portner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–672.
Smith, P. et al., 2019b: Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annu. Rev. Environ. Resour. , 44(1) , 255–286, doi:10.1146/annurev-environ-101718-033129.
Smith, P. et al., 2020a: Which practices co‐deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?Glob. Change Biol. , 26(3) , 1532–1575, doi:10.1111/gcb.14878.
Smith, P. et al., 2020b: How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. , 26(1) , 219–241, doi:10.1111/gcb.14815.
Smith, V., 1997: Mispriced Planet. Perspect. Regul. , 20, 16–17.
Smyth, C.E., Z. Xu, T.C. Lemprière, and W.A. Kurz, 2020: Climate change mitigation in British Columbia’s forest sector: GHG reductions, costs, and environmental impacts. Carbon Balance Manag. , 15(1) , 21, doi:10.1186/s13021-020-00155-2.
Snapp, S. et al., 2021: Delivering climate change outcomes with agroecology in low- and middle-income countries: evidence and actions needed. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Wageningen, The Netherlands, 16 pp.
Södra, 2021: https://www.sodra.com/sv/se/. Swedish forest owners association, Vaxjo, Sweden.
Soergel, B. et al., 2021: Combining ambitious climate policies with efforts to eradicate poverty. Nat. Commun. , 12(1) , 2342, doi:10.1038/s41467-021-22315-9.
Sohngen, BS. Brown, 2004: Measuring leakage from carbon projects in open economies: a stop timber harvesting project in Bolivia as a case study. Can. J. For. Res. , 34(4) , 829–839, doi:10.1139/x03-249.
Soimakallio, S., L. Saikku, L. Valsta, and K. Pingoud, 2016: Climate Change Mitigation Challenge for Wood Utilization—The Case of Finland. Environ. Sci. Technol. , 50(10) , 5127–5134, doi:10.1021/acs.est.6b00122.
Sokolov, V.K. et al., 2021: Dairy manure acidification reduces CH4 emissions over short and long-term. Environ. Technol. , 42(18) , 2797–2804, doi:10.1080/09593330.2020.1714744.
Somarriba, E. et al., 2013: Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric. Ecosyst. Environ. , 173, 46–57, doi:10.1016/j.agee.2013.04.013.
Sombroek, W.G., F. Nachtergaele, and A. Hebel, 1993: Amounts, Dynamics and Sequestering of Carbon in Tropical and Subtropical Soils. Ambio, 7, 417–426.
Sommer, R. and D. Bossio, 2014: Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manage. , 144, 83–87, doi:10.1016/j.jenvman.2014.05.017.
Song, X.-P. et al., 2018: Global land change from 1982 to 2016. Nature, 560(7720) , 639–643, doi:10.1038/s41586-018-0411-9.
Song, X., G. Pan, C. Zhang, L. Zhang, and H. Wang, 2016: Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta‐analysis. Ecosyst. Heal. Sustain. , 2(2):e01202, doi:10.1002/ehs2.1202.
Sonntag, S., J. Pongratz, C.H. Reick, and H. Schmidt, 2016: Reforestation in a high-CO2 world – higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. , 43(12) , 6546–6553, doi:10.1002/2016GL068824.
Sonter, L.J., D.J. Barrett, C.J. Moran, and B.S. Soares-Filho, 2015: Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry. Nat. Clim. Change, 5(4) , 359–363, doi:10.1038/nclimate2515.
Soterroni, A.C. et al., 2019: Expanding the Soy Moratorium to Brazil’s Cerrado. Sci. Adv. , 5(7) , doi:10.1126/sciadv.aav7336.
Souza, Jr, C.M. et al., 2013: Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. , 5(11) , 5493–5513, doi:10.3390/rs5115493.
Springmann, M., H.C.J. Godfray, M. Rayner, and P. Scarborough, 2016: Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl. Acad. Sci. , 113(15) , 4146–4151, doi:10.1073/pnas.1523119113.
Springmann, M. et al., 2018: Options for keeping the food system within environmental limits. Nature, 562(7728) , 519–525, doi:10.1038/s41586-018-0594-0.
Sriphirom, P., A. Chidthaisong, and S. Towprayoon, 2019: Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season. J. Clean. Prod. , 223, 980–988, doi:10.1016/j.jclepro.2019.03.212.
Sriphirom, P., A. Chidthaisong, K. Yagi, S. Tripetchkul, and S. Towprayoon, 2020: Evaluation of biochar applications combined with alternate wetting and drying (AWD) water management in rice field as a methane mitigation option for farmers’ adoption. Soil Sci. Plant Nutr. , 66 (1) , 235–246, doi:10.1080/00380768.2019.1706431.
Stanturf, J.A. et al., 2015: Forest Landscape Restoration as a Key Component of Climate Change Mitigation and Adaptation. International Union of Forest Research Organizations, Vienna, Austria, 75 pp.
Staples, M.D., R. Malina, and S.R.H. Barrett, 2017: The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy, 2(2) , 16202, doi:10.1038/nenergy.2016.202.
Stenzel, F., D. Gerten, C. Werner, and J. Jägermeyr, 2019: Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5°C. Environ. Res. Lett. , 14(8) , 084001, doi:10.1088/1748-9326/ab2b4b.
Stenzel, F., D. Gerten, and N. Hanasaki, 2020: Global scenarios of irrigation water use for bioenergy production: a systematic review. Hydrol. Earth Syst. Sci. 25, 4, 1711-1726, doi:10.5194/hess-2020-338.
Stephens, N. et al., 2018: Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. , 78 (June 2017), 155–166, doi:10.1016/j.tifs.2018.04.010.
Stephens, S.L. et al., 2020: Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. , 18(6) , 354–360, doi:10.1002/fee.2218.
Stern, T. et al., 2018: Perceptions on the Importance of Forest Sector Innovations: Biofuels, Biomaterials, or Niche Products?Forests, 9(5) , 255, doi:10.3390/f9050255.
Stevanović, M. et al., 2017: Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices. Environ. Sci. Technol. , 51(1) , 365–374, doi:10.1021/acs.est.6b04291.
Strandberg, G. and E. Kjellström, 2019: Climate Impacts from Afforestation and Deforestation in Europe. Earth Interact. , 23(1) , 1–27, doi:10.1175/EI-D-17-0033.1.
Strassburg, B.B.N. et al., 2020: Global priority areas for ecosystem restoration. Nature, 586(7831) , 724–729, doi:10.1038/s41586-020-2784-9.
Streck, C., 2012: Financing REDD+: matching needs and ends. Curr. Opin. Environ. Sustain. , 4(6) , 628–637, doi:10.1016/j.cosust.2012.10.001.
Strefler, J. et al., 2021: Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. , 16(7) , 074021, doi:10.1088/1748-9326/ac0a11.
Sumaila, U.R. and V.W.Y. Lam, 2020: Climate change and British Columbia’s staple seafood supplies and prices. In: Environmental Assessments: Scenarios, Modelling and Policy[Ninan, K. (ed.)]. Edward Elgar Publishing, pp. 162–178.
Sumaila, U.R., W.W.L. Cheung, P.M. Cury, and T. Tai, 2017: Climate change, marine ecosystems and global fisheries. In: Building a Climate Resilient Economy and Society[Ninan, K.N. and M. Inoue, (eds.)]. Edward Elgar Publishing, Cheltenham, UK and Northampton, USA. pp. 151–163.
Sun, F. and R.T. Carson, 2020: Coastal wetlands reduce property damage during tropical cyclones. Proc. Natl. Acad. Sci. , 117(11) , 5719–5725, doi:10.1073/pnas.1915169117.
Sun, W. et al., 2020: Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Change Biol. , 26(6) , 3325–3335, doi:10.1111/gcb.15001.
Sunderlin, W.D. et al., 2018: Creating an appropriate tenure foundation for REDD+: The record to date and prospects for the future. World Dev. , 106, 376–392, doi:10.1016/j.worlddev.2018.01.010.
Swann, A.L.S., I.Y. Fung, and J.C.H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. , 109 (3) , 712–716, doi:10.1073/pnas.1116706108.
Tacconi, L. and M.Z. Muttaqin, 2019: Reducing emissions from land use change in Indonesia: An overview. For. Policy Econ. , 108, 101979, doi:10.1016/j.forpol.2019.101979.
Taillardat, P., B.S. Thompson, M. Garneau, K. Trottier, and D.A. Friess, 2020: Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus, 10(5) , 20190129, doi:10.1098/rsfs.2019.0129.
Takakai, F., Y. Kominami, S. Ohno, and O. Nagata, 2020: Effect of the long-term application of organic matter on soil carbon accumulation and GHG emissions from a rice paddy field in a cool-temperate region, Japan. I. Comparison of rice straw and rice straw compost. Soil Sci. Plant Nutr. , 66(1) , 84–95, doi:10.1080/00380768.2019.1609335.
Tan, Z.D., M. Lupascu, and L.S. Wijedasa, 2021: Paludiculture as a sustainable land use alternative for tropical peatlands: A review. Sci. Total Environ. , 753, 142111, doi:10.1016/j.scitotenv.2020.142111.
Tanneberger, F. et al., 2020b: Climate Change Mitigation through Land Use on Rewetted Peatlands – Cross-Sectoral Spatial Planning for Paludiculture in Northeast Germany. Wetlands, 40(6) , 2309–2320, doi:10.1007/s13157-020-01310-8.
Tanneberger, F. et al., 2020a: The Power of Nature‐Based Solutions: How Peatlands Can Help Us to Achieve Key EU Sustainability Objectives. Adv. Sustain. Syst. , 5(1) , 2000146, doi:10.1002/adsu.202000146.
Taubert, F. et al., 2018: Global patterns of tropical forest fragmentation. Nature, 554(7693) , 519–522, doi:10.1038/nature25508.
Taylor, J.S., J. Parfitt, and D. Jarosz, 2019: Regulating the role of Unfair Trading Practices in food waste generation. European Union - EU Horizon 2020 REFRESH Policy Brief, February 2019, 14 pp.
ten Berge, H.F.M. et al., 2019: Maize crop nutrient input requirements for food security in sub-Saharan Africa. Glob. Food Sec. , 23, 9–21, doi:10.1016/j.gfs.2019.02.001.
Teuling, A.J. et al., 2017: Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. , 8(1) , 14065, doi:10.1038/ncomms14065.
Thakuri, S. et al., 2020: Methane emission factors and carbon fluxes from enteric fermentation in cattle of Nepal Himalaya. Sci. Total Environ. , 746, 141184, doi:10.1016/j.scitotenv.2020.141184.
The Royal Society Science Policy Centre, 2014: Resilience to extreme weather. The Royal Society, London, UK, 124 pp. https://royalsociety.org/-/media/policy/projects/resilience-climate-change/resilience-full-report.pdf (Accessed February 15, 2021).
Theurl, M.C. et al., 2020: Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050. Sci. Total Environ. , 735, 139353, doi:10.1016/j.scitotenv.2020.139353.
Thierfelder, C. et al., 2017: How climate-smart is conservation agriculture – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Secur. , 9(3) , 537–560, doi:10.1007/s12571-017-0665-3.
Thiery, W. et al., 2017: Present‐day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. , 122(3) , 1403–1422, doi:10.1002/2016JD025740.
Thomas, N. et al., 2017: Distribution and drivers of global mangrove forest change, 1996–2010. PLoS One, 12(6) , e0179302, doi:10.1371/journal.pone.0179302.
Thompson, L.R. and J.E. Rowntree, 2020: Invited Review: Methane sources, quantification, and mitigation in grazing beef systems. Appl. Anim. Sci. , 36(4) , 556–573, doi:10.15232/aas.2019-01951.
Thomson, A.M. et al., 2019: Sustainable intensification in land systems: trade-offs, scales, and contexts. Curr. Opin. Environ. Sustain. 38, 37–43, doi:10.1016/j.cosust.2019.04.011.
Thornton, P.K. and M. Herrero, 2015: Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat. Clim. Change, 5(9) , 830–836, doi:10.1038/nclimate2754.
Thyagharajan, K.K. and T. Vignesh, 2019: Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review. Arch. Comput. Methods Eng. , 26(2) , 275–301, doi:10.1007/s11831-017-9239-y.
Tian, H. et al., 2020: A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828) , 248–256, doi:10.1038/s41586-020-2780-0.
Tian, X., B. Sohngen, J. Baker, S. Ohrel, and A.A. Fawcett, 2018: Will U.S. Forests Continue to Be a Carbon Sink?Land Econ. , 94(1) , 97–113, doi:10.3368/le.94.1.97.
Tilman, D. and M. Clark, 2014: Global diets link environmental sustainability and human health. Nature, 515(7528) , 518–522, doi:10.1038/nature13959.
Tisserant, A. and F. Cherubini, 2019: Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation. Land, 8(12) , 179, doi:10.3390/land8120179.
Tittonell, P., 2020: Assessing resilience and adaptability in agroecological transitions. Agric. Syst. , 184, 102862, doi:10.1016/j.agsy.2020.102862.
Toensmeier, E., 2016: The carbon farming solution: a global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. Chelsea Green Publishing, White River Junction, VT, USA, 480 pp.
Tougiani, A., C. Guero, and T. Rinaudo, 2009: Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal, 74(5) , 377–389, doi:10.1007/s10708-008-9228-7.
Toumpanakis, A., T. Turnbull, and I. Alba-Barba, 2018: Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diabetes Res. Care, 6(1) , e000534, doi:10.1136/bmjdrc-2018-000534.
Tran, D.H., T.N. Hoang, T. Tokida, A. Tirol-Padre, and K. Minamikawa, 2018: Impacts of alternate wetting and drying on greenhouse gas emission from paddy field in Central Vietnam. Soil Sci. Plant Nutr. , 64(1) , 14–22, doi:10.1080/00380768.2017.1409601.
Tritsch, I. et al., 2020: Do forest-management plans and FSC certification help avoid deforestation in the Congo Basin?Ecol. Econ. , 175, 106660, doi:10.1016/j.ecolecon.2020.106660.
Tscharntke, T. et al., 2011: Multifunctional shade-tree management in tropical agroforestry landscapes – a review. J. Appl. Ecol. , 48(3) , 619–629, doi:10.1111/j.1365-2664.2010.01939.x.
Tubiello, F.N., 2019: Greenhouse Gas Emissions Due to Agriculture. In: Encyclopedia of Food Security and Sustainability, vol. 1[Ferranti, P., E.M. Berry, and J.R. Anderson (eds.)]. Elsevier, pp. 196–205.
Tubiello, F.N. et al., 2020: Carbon emissions and removals by forests: new estimates, 1990–2020. Earth Syst. Sci. Data, doi:10.5194/essd-2020-203.
Tuomisto, H.L., I.D. Hodge, P. Riordan, and D.W. Macdonald, 2012: Does organic farming reduce environmental impacts? – A meta-analysis of European research. J. Environ. Manage. , 112, 309–320, doi:10.1016/j.jenvman.2012.08.018.
Turner, P.A., C.B. Field, D.B. Lobell, D.L. Sanchez, and K.J. Mach, 2018a: Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustain. , 1(5) , 240–245, doi:10.1038/s41893-018-0063-7.
Turner, P.A. et al., 2018b: The global overlap of bioenergy and carbon sequestration potential. Clim. Change, 148(1–2) , 1–10, doi:10.1007/s10584-018-2189-z.
Turnhout, E. et al., 2017: Envisioning REDD+ in a post‐Paris era: between evolving expectations and current practice. WIREs Clim. Change, 8(1) , doi:10.1002/wcc.425.
Turubanova, S., P.V. Potapov, A. Tyukavina, and M.C. Hansen, 2018: Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. , 13(7) , 074028, doi:10.1088/1748-9326/aacd1c.
Ünal, H.E., Ü. Birben, and F. Bolat, 2019: Rural population mobility, deforestation, and urbanization: case of Turkey. Environ. Monit. Assess. , 191(1) , 21, doi:10.1007/s10661-018-7149-6.
UNEP, 2019: Drivers of Environmental Change. In: Global Environment Outlook – GEO-6: Healthy Planet, Healthy People.
UNEP, 2020: Emissions Gap Report 2020. United Nations Environment Programme (UNEP), Nairobi, Kenya, 112 pp.
UNEP, 2021a: Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate. United Nations Environment Programme, Nairobi, Kenya.56p.
UNEP, 2021b: Food Waste Index Report 2021. United Nations Environment Programme (UNEP), Nairobi, Kenya, 3–99 pp.
Unger, N., 2014: Human land-use-driven reduction of forest volatiles cools global climate. Nat. Clim. Change, 4(10) , 907–910, doi:10.1038/nclimate2347.
UNIPP, 2012: Delivering as One UN at the country level in partnership with indigenous peoples and governments. 9–10 pp.
USEPA, 2019: Global Non-CO2Greenhouse Gas Emission Projections & Mitigation2015–2050. US Environmental Protection Agency, Washington, DC, USA, 43 pp.
USEPA, 2020: Inventory of US greenhouse gas emissions and sinks: 1990–2018. 733 pp. United States Environmental Protection Agency. https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf (Accessed July 1, 2021).
van der Laan-Luijkx, I.T. et al., 2017: The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001–2015. Geosci. Model Dev. , 10(7) , 2785–2800, doi:10.5194/gmd-10-2785-2017.
van der Sleen, P. et al., 2015: No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. , 8(1) , 24–28, doi:10.1038/ngeo2313.
van der Weerden, T.J. et al., 2016: Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent. Agric. Ecosyst. Environ. , 222, 133–137, doi:10.1016/j.agee.2016.02.007.
van der Werf, G.R. et al., 2017: Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data, 9(2) , 697–720, doi:10.5194/essd-9-697-2017.
van der Werf, H.M.G., M.T. Knudsen, and C. Cederberg, 2020: Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. , 3(6) , 419–425, doi:10.1038/s41893-020-0489-6.
van Diggelen, J.M.H., L.P.M. Lamers, J.H.T. Loermans, W.J. Rip, and A.J.P. Smolders, 2020: Towards more sustainable hydrological management and land use of drained coastal peatlands – a biogeochemical balancing act. Mires Peat , 26, 1–12, doi.org/10.19189/MaP.2019.APG.StA.1771.
van Giesen, R.I. and I.E. de Hooge, 2019: Too ugly, but I love its shape: Reducing food waste of suboptimal products with authenticity (and sustainability) positioning. Food Qual. Prefer. , 75, 249–259, doi:10.1016/j.foodqual.2019.02.020.
van Ittersum, M.K. et al., 2013: Yield gap analysis with local to global relevance—A review. F. Crop. Res. , 143, 4–17, doi:10.1016/j.fcr.2012.09.009.
Van Loo, E.J., C. Hoefkens, and W. Verbeke, 2017: Healthy, sustainable and plant-based eating: Perceived (mis)match and involvement-based consumer segments as targets for future policy. Food Policy, 69, 46–57, doi:10.1016/j.foodpol.2017.03.001.
van Meijl, H. et al., 2018: Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. , 13(6) , 064021, doi:10.1088/1748-9326/aabdc4.
van Soest, H.L. et al., 2019: Analysing interactions among Sustainable Development Goals with Integrated Assessment Models. Glob. Transitions, 1, 210–225, doi:10.1016/j.glt.2019.10.004.
van Vuuren, D.P. et al., 2018: Alternative pathways to the 1.5°C target reduce the need for negative emission technologies. Nat. Clim. Change, 8(5) , 391–397, doi:10.1038/s41558-018-0119-8.
Van Vuuren, D.P. et al., 2019: Integrated scenarios to support analysis of the food–energy–water nexus. Nat. Sustain. , 2(12) , 1132–1141, doi:10.1038/s41893-019-0418-8.
Van Wesemael, D. et al., 2019: Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. J. Dairy Sci. , 102(2) , 1780–1787, doi:10.3168/jds.2018-14534.
Van Zwieten, L. et al., 2015: Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant Soil, 395(1–2) , 7–20, doi:10.1007/s11104-015-2427-3.
Vainer Manzatto, C., et al., 2020: Mitigação das emissões de Gases de Efeitos Estufa pela adoção das tecnologias do Plano ABC: estimativas parciais. Brasilia, Brazil, 36 pp. https://www.embrapa.br/meio-ambiente/.Embrapa (Accessed September 1, 2021).
Varghese, A., T. Ticktin, L. Mandle, and S. Nath, 2015: Assessing the Effects of Multiple Stressors on the Recruitment of Fruit Harvested Trees in a Tropical Dry Forest, Western Ghats, India. PLoS One, 10(3) , e0119634, doi:10.1371/journal.pone.0119634.
Vaughan, N.E. et al., 2018: Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ. Res. Lett. , 13(4) , 044014, doi:10.1088/1748-9326/aaaa02.
Venkatramanan, V., S. Shah, and R. Prasad, 2020: Global Climate Change: Resilient and Smart Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9856-9.
Vera, I., R. Hoefnagels, M. Junginger, and F. Hilst, 2021: Supply potential of lignocellulosic energy crops grown on marginal land and greenhouse gas footprint of advanced biofuels—A spatially explicit assessment under the sustainability criteria of the Renewable Energy Directive Recast. GCB Bioenergy, 13(9) , 1425–1447, doi:10.1111/gcbb.12867.
Verhoeven, E. et al., 2017: Toward a Better Assessment of Biochar-Nitrous Oxide Mitigation Potential at the Field Scale. J. Environ. Qual. , 46(2) , 237–246, doi:10.2134/jeq2016.10.0396.
Verkerk, P.J. et al., 2020: Climate-Smart Forestry: the missing link. For. Policy Econ. , 115, 102164, doi:10.1016/j.forpol.2020.102164.
Vijn, S. et al., 2020: Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle. Front. Vet. Sci. , 7, Art597430 doi:10.3389/fvets.2020.597430.
Vogel, E. and R. Meyer, 2018: Climate Change, Climate Extremes, and Global Food Production—Adaptation in the Agricultural Sector. Resilience.2018: 31–49. https://doi.org/10.1016/B978-0-12-811891-7.00003-7.
Wade, C.M., J.S. Baker, G. Latta, S.B. Ohrel, and J. Allpress, 2019: Projecting the Spatial Distribution of Possible Planted Forest Expansion in the United States. J. For. , 117 (6) , 560–578, doi:10.1093/jofore/fvz054.
Walker, W.S. et al., 2020: The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. , 117(6) , 3015–3025, doi:10.1073/pnas.1913321117.
Walkup, J., Z. Freedman, J. Kotcon, and E.M. Morrissey, 2020: Pasture in crop rotations influences microbial biodiversity and function reducing the potential for nitrogen loss from compost. Agric. Ecosyst. Environ. , 304, 107122, doi:10.1016/j.agee.2020.107122.
Wang, F. et al., 2021: Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. , 8(9) , doi:10.1093/nsr/nwaa296.
Wang, J., X. Pan, Y. Liu, X. Zhang, and Z. Xiong, 2012: Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil, 360(1–2) , 287–298, doi:10.1007/s11104-012-1250-3.
Wang, J., Z. Xiong, and Y. Kuzyakov, 2016: Biochar stability in soil: meta‐analysis of decomposition and priming effects. GCB Bioenergy, 8(3) , 512–523, doi:10.1111/gcbb.12266.
Wang, J., H. Akiyama, K. Yagi, and X. Yan, 2018: Controlling variables and emission factors of methane from global rice fields. Atmos. Chem. Phys. , 18(14) , 10419–10431, doi:10.5194/acp-18-10419-2018.
Wang, Y. et al., 2020: Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. , 3(4) , 290–295, doi:10.1038/s41893-019-0470-4.
Wanger, T.C. et al., 2020: Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. , 4(9) , 1150–1152, doi:10.1038/s41559-020-1262-y.
Ward, C. et al., 2021: Smallholder perceptions of land restoration activities: rewetting tropical peatland oil palm areas in Sumatra, Indonesia. Reg. Environ. Change, 21(1) , 1, doi:10.1007/s10113-020-01737-z.
Ward, M. et al., 2020: Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. , 4(10) , 1321–1326, doi:10.1038/s41559-020-1251-1.
Watson, J.E.M., N. Dudley, D.B. Segan, and M. Hockings, 2014: The performance and potential of protected areas. Nature, 515(7525) , 67–73, doi:10.1038/nature13947.
Watson, J.E.M. et al., 2016: Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Curr. Biol. , 26(21) , 2929–2934, doi:10.1016/j.cub.2016.08.049.
Wear, D.N. and B.C. Murray, 2004: Federal timber restrictions, interregional spillovers, and the impact on US softwood markets. J. Environ. Econ. Manage. , 47(2) , 307–330, doi:10.1016/S0095-0696(03)00081-0.
Webb, E.L. et al., 2014: Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Change, 24, 321–333, doi:10.1016/j.gloenvcha.2013.10.007.
Weindl, I. et al., 2015: Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environ. Res. Lett. , 10(9) , 094021, doi:10.1088/1748-9326/10/9/094021.
Weltin, M. et al., 2018: Conceptualising fields of action for sustainable intensification – A systematic literature review and application to regional case studies. Agric. Ecosyst. Environ. , 257, 68–80, doi:10.1016/j.agee.2018.01.023.
Weng, Z. (Han) et al., 2018: The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol. Soil Biol. Biochem. , 118, 91–96, doi:10.1016/j.soilbio.2017.12.008.
Weng, Z.H. et al., 2015: Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biol. Biochem. , 90, 111–121, doi:10.1016/j.soilbio.2015.08.005.
White, R.P., S. Murray, and M. Rohwede, 2000: Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resource Institute. Washington, DC, USA, 81 pp.
Whitehead, P.J., J. Russell-Smith, and C. Yates, 2014: Fire patterns in north Australian savannas: extending the reach of incentives for savanna fire emissions abatement. Rangel. J. , 36(4) , 371, doi:10.1071/RJ13129.
Wiedinmyer, C. and M.D. Hurteau, 2010: Prescribed Fire As a Means of Reducing Forest Carbon Emissions in the Western United States. Environ. Sci. Technol. , 44(6) , 1926–1932, doi:10.1021/es902455e.
Wigneron, J.-P. et al., 2020: Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. , 6(6) : eaay4603 doi:10.1126/sciadv.aay4603.
Wijaya, A. et al., 2017: How Can Indonesia Achieve Its Climate Change Mitigation Goal? An Analysis of Potential Emissions Reductions from Energy and Land-Use Policies. World Resources Institute, Washington, DC, USA, 36 pp.
Wilson, C., H. Pettifor, E. Cassar, L. Kerr, and M. Wilson, 2019: The potential contribution of disruptive low-carbon innovations to 1.5°C climate mitigation. Energy Effic. , 12(2) , 423–440, doi:10.1007/s12053-018-9679-8.
Wilson, D. et al., 2016: Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat , 17(4) , 1–28, doi:10.19189/MaP.2016.OMB.222.
Wilson, K. and H. Lotze, 2019: Climate change projections reveal range shifts of eelgrass Zostera marina in the Northwest Atlantic. Mar. Ecol. Prog. Ser. , 620, 47–62, doi:10.3354/meps12973.
Windham-Myers, L. et al., 2018: Chapter 15: Tidal Wetlands and Estuaries. Second State of the Carbon Cycle Report [Cavallaro, N., G. Shrestha, R. Birdse, M.A. Mayes, R. Najjar, S. Reed, P. Romero-Lankao, and Z. Zhu, (eds.)]. Washington, DC, USA, 596–648 pp.
Wood, S.L.R. et al., 2018: Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. , 29, 70–82, doi:10.1016/j.ecoser.2017.10.010.
Woodward, R.T., D.A. Newburn, and M. Mezzatesta, 2016: Additionality and reverse crowding out for pollution offsets in water quality trading. Ecol. Econ. , 128, 224–231, doi:10.1016/j.ecolecon.2016.05.001.
Woolf, D., J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph, 2010: Sustainable biochar to mitigate global climate change. Nat. Commun. , 1(1) , 56, doi:10.1038/ncomms1053.
Woolf, D., J. Lehmann, and D.R. Lee, 2016: Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat. Commun. , 7(1) , 13160, doi:10.1038/ncomms13160.
Worden, J.R. et al., 2017: Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. , 8(1) , 2227, doi:10.1038/s41467-017-02246-0.
World Bank, 2019: Illegal Logging, Fishing, and Wildlife Trade: The Cost and How to Combat it . The World Bank, Washington, DC, USA, 70 pp.
Wotton, B.M., M.D. Flannigan, and G.A. Marshall, 2017: Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. , 12(9) , 095003, doi:10.1088/1748-9326/aa7e6e.
Wu, H. et al., 2017: The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit. Rev. Biotechnol. , 37(6) , 754–764, doi:10.1080/07388551.2016.1232696.
Wu, J., 2000: Slippage Effects of the Conservation Reserve Program. Am. J. Agric. Econ. , 82(4) , 979–992, doi:10.1111/0002-9092.00096.
Wu, W. et al., 2019: Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy, 11(9) , gcbb.12614, doi:10.1111/gcbb.12614.
Wunder, S., 2007: The Efficiency of Payments for Environmental Services in Tropical Conservation. Conserv. Biol. , 21(1) , 48–58, doi:10.1111/j.1523-1739.2006.00559.x.
WWF, 2020: The Living Planet Index 2020: Bending the Curve of Biodiversity Loss-Summary[Almond, R.E.A., M. Grooten M., and T. Petersen (eds.)]. WWF, Gland, Switzerland, 83 pp.
Wylie, L., A.E. Sutton-Grier, and A. Moore, 2016: Keys to successful blue carbon projects: Lessons learned from global case studies. Mar. Policy, 65, 76–84, doi:10.1016/j.marpol.2015.12.020.
Wynberg, R., 2017: Making sense of access and benefit sharing in the rooibos industry: Towards a holistic, just and sustainable framing. South African J. Bot. , 110, 39–51, doi:10.1016/j.sajb.2016.09.015.
Xie, S.H., W.A. Kurz, and P.N. McFarlane, 2021: Inward- versus outward-focused bioeconomy strategies for British Columbia’s forest products industry: a harvested wood products carbon storage and emission perspective. Carbon Balance Manag. , 16(1) , 30, doi:10.1186/s13021-021-00193-4.
Xu, Z., C.E. Smyth, T.C. Lemprière, G.J. Rampley, and W.A. Kurz, 2018: Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia, Canada. Mitig. Adapt. Strateg. Glob. Change, 23, 257–290, doi:10.1007/s11027-016-9735-7.
Xue, D. and C. Tisdell, 2001: Valuing ecological functions of biodiversity in Changbaishan Mountain Biosphere Reserve in Northeast China. Biodivers. Conserv. , 10, 467–481, doi.org/10.1023/A:1016630825913.
Yagi, K. et al., 2020: Potential and promisingness of technical options for mitigating greenhouse gas emissions from rice cultivation in Southeast Asian countries. Soil Sci. Plant Nutr. , 66(1) , 37–49, doi:10.1080/00380768.2019.1683890.
Yamaguchi, T., M.T. Luu, K. Minamikawa, and S. Yokoyama, 2017: Compatibility of Alternate Wetting and Drying Irrigation with Local Agriculture in An Giang Province, Mekong Delta, Vietnam. Trop. Agric. Dev., 61(3) , 117–127, doi.org/10.11248/jsta.61.117.
Yamaguchi, T., L.M. Tuan, K. Minamikawa, and S. Yokoyama, 2019: Assessment of the relationship between adoption of a knowledge-intensive water-saving technique and irrigation conditions in the Mekong Delta of Vietnam. Agric. Water Manag. , 212, 162–171, doi:10.1016/j.agwat.2018.08.041.
Yao, G., T.W. Hertel, and F. Taheripour, 2018: Economic drivers of telecoupling and terrestrial carbon fluxes in the global soybean complex. Glob. Environ. Change, 50, 190–200, doi:10.1016/j.gloenvcha.2018.04.005.
Yao, Y. et al., 2020: Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. Renew. Sustain. Energy Rev. , 119, 109494, doi:10.1016/j.rser.2019.109494.
Ye, L. et al., 2020: Biochar effects on crop yields with and without fertilizer: A meta‐analysis of field studies using separate controls. Soil Use Manag. , 36(1) , 2–18, doi:10.1111/sum.12546.
Zak, D. et al., 2018: Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane emissions from rewetted peatlands. J. Appl. Ecol. , 55(1) , 311–320, doi:10.1111/1365-2664.12931.
Zelli, F., I. Möller, and H. van Asselt, 2017: Institutional complexity and private authority in global climate governance: the cases of climate engineering, REDD+ and short-lived climate pollutants. Env. Polit. , 26(4) , 669–693, doi:10.1080/09644016.2017.1319020.
Zhang, A. et al., 2010: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. , 139(4) , 469–475, doi:10.1016/j.agee.2010.09.003.
Zhang, B., A. Hastings, J.C. Clifton‐Brown, D. Jiang, and A.P.C. Faaij, 2020: Modeled spatial assessment of biomass productivity and technical potential of Miscanthus×giganteus, Panicum virgatum L. , and Jatropha on marginal land in China. GCB Bioenergy, 12(5) , 328–345, doi:10.1111/gcbb.12673.
Zhang, J.J. et al., 2017: Nutrient Expert Improves Nitrogen Efficiency and Environmental Benefits for Summer Maize in China. Agron. J. , 109(3) , 1082–1090, doi:10.2134/agronj2016.08.0477.
Zhao, N., J. Lehmann, and F. You, 2020: Poultry Waste Valorization via Pyrolysis Technologies: Economic and Environmental Life Cycle Optimization for Sustainable Bioenergy Systems. ACS Sustain. Chem. Eng. , 8(11) , 4633–4646, doi:10.1021/acssuschemeng.0c00704.
Zhao, Q. et al., 2016: A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic. , 60, 442–452, doi:10.1016/j.ecolind.2015.07.003.
Zhu, K., J. Zhang, S. Niu, C. Chu, and Y. Luo, 2018: Limits to growth of forest biomass carbon sink under climate change. Nat. Commun. , 9(1) , 2709, doi:10.1038/s41467-018-05132-5.
Zhu, P., Q. Zhuang, J. Eva, and C. Bernacchi, 2017: Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States. GCB Bioenergy, 9, 577–590. https://doi.org/10. 1111/gcbb.12370.
Zhu, X. et al., 2020: Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. Plant Soil, 453(1–2) , 45–86, doi:10.1007/s11104-019-04377-3.
Zimmerman, A.R. and L. Ouyang, 2019: Priming of pyrogenic C (biochar) mineralization by dissolved organic matter and vice versa. Soil Biol. Biochem. , 130, 105–112, doi:10.1016/j.soilbio.2018.12.011.
Zomer, R.J. et al., 2016: Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. , 6(1) , 29987, doi:10.1038/srep29987.
Zougmoré, R., A. Jalloh, and A. Tioro, 2014: Climate-smart soil water and nutrient management options in semiarid West Africa: a review of evidence and analysis of stone bunds and zaï techniques. Agric. Food Secur. , 3(1) , 16, doi:10.1186/2048-7010-3-16.
Zschornack, T. et al., 2018: Soil CH4 and N2O Emissions from Rice Paddy Fields in Southern Brazil as Affected by Crop Management Levels: a Three-Year Field Study. Rev. Bras. Ciência do Solo, 42, doi:10.1590/18069657rbcs20170306.
Zygourakis, K., 2017: Biochar soil amendments for increased crop yields: How to design a “designer” biochar. AIChE J. , 63(12) , 5425–5437, doi:10.1002/aic.15870.
1 Global databases make different choices about which emissions and removals occurring on land are considered anthropogenic. Currently, net CO2 land fluxes from land reported by global book-keeping models used here differ from those from the aggregate global net emissions based on national GHG inventories. This difference, which has been considered in the literature, mainly reflects differences in how anthropogenic forest sinks and areas of managed land are defined. Other reasons for this difference, which are more difficult to quantify, can arise from the limited representation of land management in global models and varying levels of accuracy and completeness of estimated LULUCF fluxes in national GHG inventories. Neither method is inherently preferable. This chapter reports estimates from different databases and approaches, but uses CO2LULUCF from book-keeping models to report overall emissions to ensure consistency and comparability across chapters.
2 Bookkeeping models and dynamic global vegetation models.
3 Scenarios are considered consistent between global and regional results (based on R5 regions), if the sum of regional emissions (or sequestration efforts) does not deviate more than 10% from the reported global total. To take into account that small absolute values have a higher sensitivity, a deviation of 90% is allowed for absolute values below 100.